United States Naval Postgraduate School

AERODYNAMIC DESIGN OF SYMMETRICAL
BLADING FOR THREE-STAGE AXIAL FLOW
COMPRESSOR TEST RIG
by
M. H. Vavra

1 September 1970

> This document has been approved for public release and sale; its distribution is unlimited.

Rear Admiral R. W. McNitt, USN
Superintendent
M. U. Clauser

Academic Dean

ABSTRACT:

This report deals with the aerodynamic design of an axial compressor stage with symmetrical bladings for a research program to investigate tip clearance effects in the three-stage compressor of the TurboPropulsion Laboratory, NPS. It establishes the blading data and the stage performance with an iterative three-dimensional approach, and gives design criteria for the drive and the flow measuring device of the test unit. The calculated distributions of the flow properties in the stage will be used for future comparisons with test data.

This task was supported by: Navy Department
Naval Air Systems Command, Code 310
AIRTASK No. A310310A/551A/1R01003010

TABLE OF CONTENTS

Page

1. Introduction 1
2. First Approximation of Three-Dimensional Flow Pattern 2
3. Permissible Flow Deflections 4
4. Approximate Operating Conditions of Compressor 7
5. Determination of Blading Parameters 9
6. Method for Better Approximation of Flow Conditions 10
7. Results of Flow Calculations 15
8. Blade Profiles and Stagger Angles 19
Bibliography 32
Figures 33
Tables 46
9. Velocity Diagram of Symmetrical Stage at Mean Radius $R_{m} \quad 33$
10. Velocity Diagram of Symmetrical Stage for Flow on Cylindrical 33 Stream Surface with $R_{2}=R_{1}$
11. Velocity Diagram of Stage with Flow on Arbitrary Stream Surface 33
12. Theoretical Pressure Rise in Compressor for Power of 135 HP 34
13. Volume Flow Rate of Compressor for Power of 135 HP 35
14. Speed of Rotation of Compressor for Power of 135 HP 35
15. Flow Deflections in Rotor Cascade at Different Values of Flow 37 Inlet Angle and NASA Diffusion Factor
16. Distribution of Axial Velocities ahead and after Rotor 38
17. Relative Volume Flow Rates ahead of and after Rotor of First 39 Approximation
18. Radial Shift of Stream Surfaces in Rotor from Data of First 40 Approximation
19. Function $f\left(r_{2}\right)$ and $\int f\left(r_{2}\right) d r_{2}$ for Second Approximation 41
20. Relative Volume Flow Rates after Rotor 42
21. Thickness Distribution of Rotor and Stator Blades 43
22. Determination of Profile Coordinates 44
23. Calculated Pressure Distributions in Stage 45

Table

Page

I	Three-Dimensional Flow Conditions in Compressor Stage with Velocity Diagram of Fig. 2, on Cylindrical Stream	46
	Surfaces for $B_{1 \mathrm{~m}}=45^{\circ}, D_{\mathrm{m}}=0.40$	

do. for $B_{1 m}=45^{\circ}, D_{m}=0.35 \quad 47$
III do. for $B_{1 m}=40^{\circ}, D_{m}=0.40 \quad 48$
do. for $B_{1 \mathrm{~m}}=40^{\circ}, D_{m}=0.35$
v

Flow Rate Calculations from First Approximation 50

VI Iterations for Axial Velocity Components of Second 51
VII Summary of Flow Properties in Stage 52
VIII Rotor Blade Profiles for Assumed Chords and Thicknesses 53
Stator Blade Profiles for Assumed Chords and Thicknesses 54

Rotor and Stator Losses, Pressures and Stage Efficiencies 55

1. INTRODUCTION

The three-stage axial flow compressor test rig of the TurboPropulsion Laboratory, Department of Aeronautics, NPS, will be used to carry out a Navy sponsored research program on three-dimensional flow phenomena in compressor bladings. This compressor with a tip diameter of 36 in. and a hub/tip ratio of 0.6 is presently equipped with lightly loaded bladings which are of the free-vortex type. A 50 HP two-speed electric motor is now directly coupled to the compressor. Further details of the test rig are given in Ref. 1 (See Bibliography at end of text).

During the first phase of the research program, so-called symmetrical bladings with high aerodynamic loading will be tested. Further, in order to increase the pressure rise in the compressor, primarily to improve the measuring accuracy, the present motor will be replaced by a 150 HP motor that was obtained from surplus. This motor has the following characteristics:

Make: General Dynamics/Electro Dynamics, Bayonne, N. J.
Frame: 505 Y - Type TN
Serial No.: 70105116 A6
Cont. Load: $150 \mathrm{HP}, 1180 \mathrm{rpm}, 440 \mathrm{~V} / 3$ phase, 190 Amps
It is planned also to make tests with one, two, or three stages, preferable in such a manner that the full power of the motor can be utilized in all three cases, requiring operations at different speeds. It is intended to make this possible by arranging a V-belt drive with different replaceable pulleys.

The objective of this study is to establish the aerodynamic design of the new blading, and to determine the maximum speeds at which these stages can operate at a driving power of 150 HP . These data will then be used in a future report to design the V-belt drive and the nozzle for the measuring of the compressor flow rate, since Ref. 1 shows that the presently used measuring method gives doubtful results.

The blade loadings will be such that the NASA diffusion factor does not exceed a value of 0.5 for the rotor, or 0.6 for the stator. All three stages will be identical. The flow conditions ahead of and after the blade rows will be determined with the methods of Ref. 2.
2. FIRST APPROXIMATION OF THREE-DIMENSIONAL FLOW PATTERN.

For stages with equal energy input from hub to tip without imposed radial energy gradients, the change of the axial velocity component in radial direction can be obtained from Eq. $16(50)$ of Ref. 2. For a first approximation $1 t$ is assumed that the axial components $V_{m 1}$ and $V_{m 2}$ ahead of and after the rotor blades are equal at the mean radius R_{m}, and that the radial shift of the stream surfaces can be ignored. The resulting velocity diagram of the blading at the arithmetic mean radius R_{m} is shown in Fig. 1. Figure 2 represents the conditions for a cylindrical stream surface at an arbitrary radius R between hub and tip. The actual velocity diagram for a stream surface that has the radi1 R_{1} and R_{2} ahead of and after the rotor, respectively, is given by Fig. 3. The symbols used in these figures, and in the following derivations, are defined in Ref. 2.

From Eq. 16 (42) of Ref. 2 and by Fig. 1

$$
\begin{equation*}
K=R \quad \Delta V_{u}=R_{m} \quad \Delta V_{u m}=R_{m} V_{m}\left(\tan \beta_{1 m}-\tan \beta_{2 m}\right) \tag{1}
\end{equation*}
$$

Also

$$
\omega R_{m}=W_{u 1 m}+V_{u 1 m}=W_{u 1 m}+W_{u 2 m}=V_{m}\left(\tan \beta_{1 m}+\tan \beta_{2 m}\right)
$$

and

$$
\begin{equation*}
V_{m}=\frac{\omega R_{m}}{\tan \beta_{1 m}+\tan \beta_{2 m}} \tag{2}
\end{equation*}
$$

thus

$$
\begin{equation*}
K=\omega R_{m}^{2} X \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
X=\frac{\tan \beta_{1 m}-\tan \beta_{2 m}}{\tan \beta_{1 m}+\tan \beta_{2 m}} \tag{4}
\end{equation*}
$$

From Eq. 16 (52) of Ref. 2

$$
\begin{align*}
\frac{V_{u 1}}{\omega R_{m}} & =-\frac{R_{m}}{R} \frac{X}{2}+\frac{1}{2} \frac{R}{R_{m}} \tag{5}\\
\frac{V_{u 2}}{\omega R_{m}} & =+\frac{R_{m}}{R} \frac{X}{2}+\frac{1}{2} \frac{R}{R_{m}} \tag{6}
\end{align*}
$$

From Eq. 16 (53) of Ref. 2

$$
\begin{equation*}
A=-\omega R_{m} \frac{X}{2} ; \quad B=0 ; \quad C=\frac{\omega R_{m}}{2} \tag{7}
\end{equation*}
$$

Introduced into Eq. 16 (50) of Ref. 2 for

$$
\begin{align*}
& v_{m l}=v_{m 2}=v_{m} \\
& v_{a l}^{2}=v_{m}^{2}-4 A C \ln \left(\frac{R}{R_{m}}\right)-2 C^{2} \ln \left[\left(\frac{R}{R_{m}}\right)^{2}-1\right] \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{v}_{\mathrm{a} 2}^{2}=\mathrm{v}_{\mathrm{m}}^{2}-4\left(\mathrm{~A}+\frac{\mathrm{K}}{\mathrm{R}_{\mathrm{m}}}\right) \mathrm{C} \ln \left(\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{m}}}\right)-2 \mathrm{c}^{2}\left[\left(\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{m}}}\right)^{2}-1\right] \tag{9}
\end{equation*}
$$

From Eqs. 8, 7 and 2

$$
v_{a l}^{2}=\frac{\omega^{2} R_{m}^{2}}{\left(\tan \beta_{1 m}+\tan \beta_{2 m}\right)^{2}}+\omega^{2} R_{m}^{2} x \ln \left(\frac{R}{R_{m}}\right)-\frac{\omega^{2} R_{m}^{2}}{2}\left[\left(\frac{R}{R_{m}}\right)^{2}-1\right]
$$

or
$\left(\frac{V_{a l}}{\omega R_{m}}\right)^{2}=Y+X \ln \left(\frac{R}{R_{m}}\right)-\frac{1}{2}\left[\left(\frac{R}{R_{m}}\right)^{2}-1\right]$
where

$$
\begin{equation*}
Y=\frac{1}{\left(\tan \beta_{1 m}+\tan _{2 m}\right)^{2}} \tag{11}
\end{equation*}
$$

From Eqs. 9, 7, 2, and 10

$$
\begin{equation*}
\left(\frac{v_{a 2}}{\omega R_{m}}\right)^{2}=Y-X \ln \left(\frac{R}{R_{m}}\right)-\frac{1}{2}\left[\left(\frac{R}{R_{m}}\right)^{2}-1\right] \tag{12}
\end{equation*}
$$

Thus, the axial velocity components V_{a} and $\mathrm{V}_{\mathrm{a} 2}$ at different radius ratios R / R_{m} can be determined with Eqs. 11 and 12 if the angles $\beta_{1 m}$ and $\beta_{2 m}$ are specified at the mean radius R_{m}.

From Fig. 2

$$
\tan \beta_{1}=\frac{\omega R-V_{u l}}{V_{a l}}=\frac{R / R_{m}-V_{u l} / \omega R_{m}}{V_{a l / \omega R_{m}}}
$$

With Eq. 5

$$
\begin{equation*}
\tan \beta_{1}=\frac{\frac{R}{R_{m}}+\frac{R_{m}}{R^{2}} \frac{X}{2}-\frac{R}{2 R_{m}}}{V_{a l / \omega R_{m}}}=\frac{\frac{R}{R_{m}}+\frac{R_{m}}{R^{\prime}} X}{2\left(V_{\left.a l / \omega R_{m}\right)}\right.} \tag{13}
\end{equation*}
$$

Similarly, with Eq. 6

$$
\begin{equation*}
\tan \beta_{2}=\frac{\omega R-V_{u 2}}{V_{a 2}}=\frac{\frac{R}{R_{m}}-\frac{R_{m}}{R} x}{2\left(V_{a 2} / \omega R_{m}\right)} \tag{14}
\end{equation*}
$$

Also from Fig. 2 and Eq. 5

$$
\begin{equation*}
\tan \alpha_{1}=\frac{V_{u l}}{V_{a l}}=\frac{\frac{R}{R_{m}}-\frac{R_{m}}{R_{n}} x}{2\left(V_{a 1} / \omega R_{m}\right)}=\tan \beta_{2} \frac{\left(V_{a 2} / \omega R_{m}\right)}{\left(V_{a 1} / \omega R_{m}\right)} \tag{15}
\end{equation*}
$$

and with Eq. 6

$$
\begin{equation*}
\tan \alpha_{2}=\frac{V_{u 2}}{V_{a 2}}=\frac{\frac{R_{r}}{R_{m}}+\frac{R_{m}}{R_{n}} x}{2\left(V_{a 2} / \omega R_{m}\right)}=\tan \beta_{1} \frac{\left(V_{a 1} / \omega R_{m}\right)}{\left({ }_{a 2} / \omega R_{m}\right)} \tag{16}
\end{equation*}
$$

With these flow angles the relative and absolute velocities $\mathrm{W}_{1}, \mathrm{~V}_{2}$, and V_{1}, V_{2} are known as multiples of ωR_{m}.

3. PERMISSIBLE FLOW DEFLECTIONS

The NASA diffusion factor D_{R} of the rotor flow is defined by [Ref. 6]

$$
\begin{equation*}
D_{R}=1-\frac{W_{2}}{W_{1}}+\frac{\Delta W_{u}}{2 \sigma_{R} W_{1}} \tag{17}
\end{equation*}
$$

where σ_{R} is the rotor solidity. The diffusion factor D_{S} of the stator flow is

$$
\begin{equation*}
D_{s}=1-\frac{v_{1}}{v_{2}}+\frac{\Delta v_{u}}{2 \sigma_{s} V_{2}} \tag{18}
\end{equation*}
$$

Assuming that the stator solidity σ_{s} equals σ_{R}, and that the chord of the stator and rotor blades does not change along the radius, there is

$$
\begin{equation*}
\sigma_{R}=\sigma_{s}=\sigma_{m} \frac{R_{m}}{R} \tag{19}
\end{equation*}
$$

where σ_{m} is the solidity at R_{m}.
From Eqs. 1 and 3

$$
\begin{equation*}
\Delta V_{u}=\Delta W_{u}=\frac{K}{R}=\omega R_{m} \frac{R_{m}}{R} X \tag{20}
\end{equation*}
$$

Then from Eq. 17 with 19

$$
\begin{equation*}
D_{R}=1-\frac{V_{a 2} / \omega R_{m}}{V_{a l} / \omega R_{m}} \frac{\cos \beta_{1}}{\cos \beta_{2}}+\frac{X \cos \beta_{1}}{2 \sigma_{m}\left(V_{a l} / \omega R_{m}\right)} \tag{21}
\end{equation*}
$$

Also by Eqs. 18, 19, and 20

$$
\begin{equation*}
D_{s}=1-\frac{V_{a l} / \omega R_{m}}{V_{a 2} / \omega R_{m}} \frac{\cos \alpha_{2}}{\cos \alpha_{1}}+\frac{X \cos \alpha_{2}}{2 \sigma_{m}\left(V_{a 2} / \omega R_{m}\right)} \tag{22}
\end{equation*}
$$

For the chosen conditions the diffusion factors D_{R} and D_{S} at the mean radius R_{m} are equal, say, equal to D_{m}, where by Eqs. 21,2 , and 4

$$
\begin{equation*}
D_{m}=1-\frac{\cos \beta_{1 m}}{\cos \beta_{2 m}}+\frac{\left(\tan \beta_{1 m}-\tan \beta_{2 m}\right) \cos \beta_{1 m}}{2 \sigma_{m}} \tag{23}
\end{equation*}
$$

Equation 23 can be rearranged to calculate directly the flow angle $\beta_{2 m}$ for specified values of $\beta_{1 m}, D_{m}$, and σ_{m}. Equation 23 rewritten

$$
\frac{1-D_{m}}{\cos \beta_{1 m}}=\frac{1}{\cos \beta_{2 m}}-\frac{\tan _{1 m}}{2 \sigma_{m}}+\frac{\tan _{2 m}}{2 \sigma_{m}}
$$

Hence

$$
\tan \beta_{1 m}+\frac{2 \sigma_{m}\left(1-D_{m}\right)}{\cos \beta_{1 m}}=\tan \beta_{2 m}+\frac{2 \sigma_{m}}{\cos \beta_{2 m}}
$$

Let

$$
\begin{equation*}
E=\tan \beta_{1 m}+\frac{2 \sigma_{m}\left(1-D_{m}\right)}{\cos \beta_{1 m}} \tag{24}
\end{equation*}
$$

then

$$
E=\frac{\sin \beta_{2 m}+2 \sigma_{m}}{\cos ^{2} \beta_{2 m}}=\frac{\sin \beta_{2 m}+2 \sigma_{m}}{\sqrt{1-\sin ^{2} \beta_{2 m}}}
$$

and

$$
\begin{equation*}
\sin \beta_{2 m}=\frac{-2 \sigma_{m} \quad{ }_{(-)} E \sqrt{1+E^{2}-4 \sigma_{m}^{2}}}{1+E^{2}} \tag{25}
\end{equation*}
$$

It is possible also to determine the deflection angle

$$
\begin{equation*}
\Delta B=\beta_{1 m}-\beta_{2 m} \tag{26}
\end{equation*}
$$

from Eq. 23. This relation rearranged

$$
\begin{aligned}
& 2 \sigma_{m} \cos \beta_{2 m}\left(1-D_{m}\right)=2 \sigma_{m} \cos \beta_{1 m}-\left(\tan \beta_{1 m}-\tan \beta_{2 m}\right) \cos \beta_{1 m} \cos \beta_{2 m} \\
& =2 \sigma_{m} \cos \beta_{1 m}-\left(\sin \beta_{1 m} \cos \beta_{2 m}-\cos \beta_{1 m} \sin \beta_{2 m}\right) \\
& =2 \sigma_{m} \cos \beta_{1 m}-\sin \left(\beta_{1 m}-\beta_{2 m}\right) \\
& =2 \sigma_{m} \cos \beta_{1 m}-\sin \Delta \beta_{1}
\end{aligned}
$$

Since from Eq. 26

$$
\beta_{2 m}=\beta_{1 m}-\Delta B
$$

there is

$$
2 \sigma_{m}\left(1-D_{m}\right)\left(\cos \beta_{1 m} \cos \Delta \beta+\sin \beta_{1 m} \sin \Delta \beta\right)=2 \sigma_{m} \cos \beta_{1 m}-\sin \Delta \beta
$$

and

$$
\sin \Delta \beta\left[\tan \beta_{1 m}+\frac{1}{2 \sigma_{m}\left(1-D_{m}\right) \cos \beta_{1 m}}\right]=\frac{1}{1-D_{m}}+\cos \Delta \beta
$$

with

$$
\begin{equation*}
F=\tan \beta_{1 m}+\frac{1}{2 \sigma_{m}\left(1-D_{m}\right) \cos \beta_{1 m}} \tag{27}
\end{equation*}
$$

there is

$$
\begin{equation*}
\sin \Delta \beta=\frac{F(\overline{+}) \sqrt{\left(1-D_{m}\right)^{2}\left(1+F^{2}\right)-1}}{\left(1-D_{m}\right)\left(1+F^{2}\right)} \tag{28}
\end{equation*}
$$

For chosen values $\beta_{1 m}$, σ_{m}, and D_{m} the flow angles $\beta_{2 m}$ can therefore be determined. The angles $\beta_{1 m}$ and $\beta_{2 m}$ then establish the quantities X and Y of Eqs. 4 and 11, respectively. Introduced into Eqs. 10 and 12 these values can be used to obtain the changes of the axial components $V_{a l}$ and $V_{a 2}$ in radial direction. With the angles β_{1} and β_{2} from Eqs. 13 and 14 it is then possible to calculate the diffusion factors D_{R} and D_{s} at particular radii with Eqs. 21 and 22.
4. APPROXIMATE OPERATING CONDITIONS OF COMPRESSOR.

The following relations will be used to establish the main parameters of the blading, which later on will be investigated in more detail.

If it is assumed that V_{m} is equal to the average through-flow velocity in the compressor annulus, the volume flow rate Q is

$$
\mathrm{Q}=\mathrm{A}_{\mathrm{c}} \mathrm{~V}_{\mathrm{m}}
$$

where A_{c} is the cross-sectional area of the annulus. With Eq. 2

$$
\begin{equation*}
Q=A_{c} \omega R_{m} \frac{1}{\tan \beta_{1 m}+\tan \beta_{2 m}} \quad\left[\mathrm{ft}^{3} / \mathrm{sec}\right] \tag{29}
\end{equation*}
$$

The driving moment M for one stage is

$$
\begin{equation*}
\dot{M}=\dot{m} R_{m} \Delta V_{u}=\stackrel{\circ}{m} K \quad[f t-1 b] \tag{30}
\end{equation*}
$$

Because of the small pressure rise in the compressor the mass flow rate \dot{m} can be taken as

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{m}}=\mathrm{Q} \rho \text { 。 } \tag{31}
\end{equation*}
$$

where ρ. is the air density at ambient conditions. For z stages ($z=1,2$, or 3) the necessary horsepower $H P$ is

$$
\begin{equation*}
H P=z \frac{\omega M}{550}=z \frac{\rho_{\rho} \omega^{3} R_{m}^{3} A_{c}\left(\tan \beta_{1 m}-\tan \beta_{2 m}\right)}{550} \tag{32}
\end{equation*}
$$

At 14.7 psia and $60^{\circ} \mathrm{F}$

$$
\rho_{0}=2.371\left(10^{-3}\right) \quad\left[s l \mathrm{ug} / \mathrm{ft}^{3}\right]
$$

With the rotational speed N in rpm

$$
\omega=\frac{\pi N}{30}
$$

For a tip diameter of 3 feet and a hub/tip ratio of 0.6

$$
\begin{aligned}
& A_{c}=\frac{\pi}{4} 3^{2}\left(1-0.6^{2}\right)=4.524 \mathrm{ft}^{2} \\
& R_{m}=1.5 \frac{(1+0.6)}{2}=1.2 \mathrm{ft}
\end{aligned}
$$

Then, from Eq. 29

$$
\begin{equation*}
Q=\frac{(0.568) N}{\tan \beta_{1 m}+\tan \beta} 2 \mathrm{~m} \quad\left[\mathrm{ft}^{3} / \mathrm{sec}\right] \tag{33}
\end{equation*}
$$

From Eq. 30

$$
\begin{equation*}
H P=(38.7) z \quad\left(\frac{N}{1000}\right)^{3}\left(\tan \beta_{1 m}-\tan \beta_{2 m}\right) \tag{34}
\end{equation*}
$$

Assuming that 135 HP are absorbed at the design point, to have available 150 HP at overload conditions, the design operating speed is obtained from

$$
\begin{equation*}
N=\frac{1516.6}{\left[z\left(\tan \beta_{1 m}-\tan \beta_{2 m}\right)\right] \frac{1}{3}} \quad[\mathrm{rpm}] \tag{35}
\end{equation*}
$$

If ΔP_{t} is the rise of the total pressure in the stage, and η the total-to-total stage efficiency, there is

$$
\begin{equation*}
\frac{Q \Delta P_{t}}{\eta}=M \omega=H P(550) \tag{36}
\end{equation*}
$$

With Eqs. 30, 31 and 3

$$
\begin{equation*}
\frac{\Delta P_{t}}{\eta}=\frac{M \omega}{Q}=\rho_{0} K \omega=\rho_{0} \omega^{2} R_{m}^{2} X \tag{37}
\end{equation*}
$$

For ${ }^{\text {a }}$ driving power of 135 HP , the pressure rise ΔP_{t} is obtained directly from the second equality of Eq. 36. With Eq. 33,

$$
\frac{\Delta P_{t}}{\eta}=130.72 \frac{\tan _{1 \mathrm{~m}}+\tan \beta_{2 \mathrm{~m}}}{(\mathrm{~N} / 1000)} \quad\left[1 \mathrm{~b} / \mathrm{ft}^{2}\right]
$$

or

$$
\begin{equation*}
\frac{\Delta P_{t}}{\eta}=25.14 \frac{\tan _{1 \mathrm{~m}}+\tan \beta_{2 \mathrm{~m}}}{(\mathrm{~N} / 1000)} \quad\left[\text { in. } \mathrm{H}_{2} 0\right] \tag{38}
\end{equation*}
$$

5. DETERMINATION OF BLADING PARAMETERS.

Most desirable for the present tests are bladings that produce the highest pressure rise at the lowest speed of rotation. Such bladings will also have low flow rates. Figures 4 and 5 show that the angles $\beta_{1 m}$ should be as high as possible for these conditions. Figure 6 indicates that the speed of rotation is not changing greatly with $B_{1 m}$ and that its magnitude is primarily a function of the diffusion factor D_{m}, which should be as high as possible.

Figure 7 shows the flow deflections $\Delta \beta=\beta_{1 m}-\beta_{2 m}$ for different angles $\beta_{1 \mathrm{~m}}$ and diffusion factors D_{m} at a solidity $\sigma_{m}=1$, which establish the quantities X and Y of Eqs. 4 and 11 , respectively. These values introduced into Eq. 12 show that the axial velocity V_{a} becomes imaginary for $\beta_{1 m}$ greater than a particular angle $\beta_{1 m}{ }^{*}$ which is depending on D_{m}. These limits of $\beta_{1 m}{ }^{*}$ for $V_{a 2}=0$ are:

$$
\begin{array}{lllll}
\mathrm{D}_{\mathrm{m}} & =0.30 & 0.35 & 0.40 & 0.45 \\
B_{1 \mathrm{~m}}^{*} & =45.7^{\circ} & 47.2^{\circ} & 47.8^{\circ} & 48.4^{\circ}
\end{array}
$$

Hence the flow angles $\beta_{1 m}$ cannot exceed about 45°.
Table I gives the flow conditions along the radius for $\beta_{1 m}=45^{\circ}$ and $D_{m}=0.4$ at the mean radius R_{m}, as calculated by the previously established relations. It can be noted that the diffusion factor D_{R} at the rotor tip is in excess of 0.56, hence unacceptably high. For $\beta_{1 m}=45^{\circ}$ and $D_{m}=0.35$ the resulting data are listed in Table II. Although D_{R} at the rotor $t i p$ is about 0.5 , the large deceleration of the axial velocity components at the outer radius from $V_{a l} / \omega R_{m}=0.4445$ to $V_{a 2} / \omega R_{m}=0.2629$, together with the negative flow deflection $\Delta \beta$ at this station, make this blading undesirable for the present purposes. The angle $\beta_{1 m}$ is therefore taken as 40° and Table III lists the data obtained for $D_{m}=0.4$. For this value the diffusion factor D_{R} at the rotor tip is larger than 0.5 . Repeating the calculations for $\beta_{1 m}=40^{\circ}$ and $D_{m}=0.35$ gave the flow conditions of Table IV which seem acceptable in all respects. These parameters are therefore chosen for a more detailed investigation of the flow conditions by taking account of the radial shift of the stream surfaces from rotor inlet to rotor discharge with the resulting velocity diagram of Fig. 3.
6. METHOD FOR BETTER APPROXIMATION OF FLOW CONDITIONS.

The quantities listed in Table IV will be called the first approximation of the flow conditions. Figure 8 shows the velocity ratios $\mathrm{V}_{\mathrm{al}} /\left(\omega \mathrm{R}_{\mathrm{m}}\right)$ and $\mathrm{V}_{\mathrm{a} 2} /\left(\omega \mathrm{R}_{\mathrm{m}}\right)$ of this approximation as functions of the radius ratio R / R_{m}. These values were obtained by assuming that $V_{a l}$ and $\mathrm{V}_{\mathrm{a} 2}$ at R_{m} are equal, and identical with the quantity V_{m} of Eqs. 8 and 9 . Moreover a fluid particle entering the rotor at a radius R_{1} is supposed to leave the rotor at the same radius, or $R_{2}=R_{1}=R$. This condition led to Eq. 1 which formulates that all fluid particles receive the same energy increase ΔH in the rotor. However if R_{1} and R_{2} differ, this requirement must be expressed by

$$
\begin{equation*}
\Delta H=\omega\left(R_{2} V_{u 2}-R_{1} V_{u 1}\right)=\text { Constant } \tag{39}
\end{equation*}
$$

If it is assumed that the energy increase ΔH in the stage is that of the first approximation, there is from Eqs. 1 and 3

$$
\begin{equation*}
\Delta H=\omega K=\omega^{2} R_{m}^{2} X \tag{40}
\end{equation*}
$$

where, from Table IV,

$$
X=0.36578
$$

Now, if the tangential components $V_{u l}$ along the radius R_{1} ahead of the rotor are taken to be those of the first approximation, namely, by Eq. 5

$$
\begin{equation*}
\frac{V_{u 1}}{\omega R_{m}}=-\frac{R_{m}}{R_{1}} \frac{X}{2}+\frac{1}{2} \frac{R_{1}}{R_{m}} \tag{41}
\end{equation*}
$$

the distribution of $V_{u 2}$ along the radius R_{2} after the rotor is from Eqs. 39, 40 and 41,

$$
\begin{equation*}
\frac{V_{u 2}}{\omega R}=\frac{R_{m}}{R_{2}}\left[\frac{X}{2}+\frac{1}{2}\left(\frac{R_{1}}{R_{m}}\right)^{2}\right] \tag{42}
\end{equation*}
$$

Thus, to satisfy Eq. 39, the components $V_{u 2}$ can be determined only if the corresponding radil R_{1} and R_{2} of the stream surfaces are known. The results of the first approximation will be used to establish an approximate relationship between R_{1} and R_{2} by applying the equation of continuity. In particular, for a chosen value of R_{1} the corresponding radius R_{2} is found from the condition that the same mass flow rate has to occur between R_{2} and the hub radius $R_{2 h}$, as between the radius R_{1} and the hub radius $R_{1 h}$. The adopted procedure is explained in the next paragraph. With R_{2} known as a function of R_{1}, the distribution of the components $V_{u 2}$ in radial direction are obtained from Eq. 42. The axial components $\mathrm{V}_{\mathrm{a} 2}$ along R_{2} can then be determined by solving Eq. 16 (41) of Ref. 2, or

$$
\begin{equation*}
\frac{\partial\left(\mathrm{V}_{\mathrm{a} 2}\right)^{2}}{\partial \mathrm{R}_{2}}=-\frac{2 \mathrm{~V}_{\mathrm{u} 2}}{\mathrm{R}_{2}} \frac{\partial\left(\mathrm{R}_{2} \mathrm{~V}_{\mathrm{u} 2}\right)}{\partial \mathrm{R}_{2}} \tag{43}
\end{equation*}
$$

if the curvatures of the generatrices of the stream surfaces and radial entropy gradients are ignored. The data obtained in this manner from Eq. 43 represent the so-called second approximation. Applied to the equation of continuity they permit a check of the relationship between R_{1} and R_{2}. If this interdependence does not correspond to that obtained from the first approximation, it will be necessary to carry out further iterations.

Evidently, if curvature effects and entropy gradients are ignored, the distribution of $V_{a l}$ along R_{1} for $V_{u l}$ of Eq. 41 is not affected by the radial shift from R_{1} and R_{2}, hence the flow conditions ahead of the rotor are those given in Table IV.

The relations for the second and, if necessary, further approximations, can be simplified by introducing the following dimensionless quantities:

$$
\begin{array}{lll}
\mathrm{r}_{1}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{m}}} & ; & \mathrm{r}_{2}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{\mathrm{m}}} \\
\mathrm{v}_{\mathrm{a} 1}^{*}=\frac{\mathrm{v}_{\mathrm{a} 1}}{\omega \mathrm{R}_{\mathrm{m}}} & ; & \mathrm{v}_{\mathrm{a} 2}^{*}=\frac{\mathrm{V}_{\mathrm{a} 2}}{\omega \mathrm{R}_{\mathrm{m}}} \tag{44}\\
\mathrm{v}_{\mathrm{u} 1}^{*}=\frac{\mathrm{v}_{\mathrm{u} 1}}{\omega \mathrm{R}_{\mathrm{m}}} & ; & \mathrm{v}_{\mathrm{u} 2}^{*}=\frac{\mathrm{v}_{\mathrm{u} 2}}{\omega \mathrm{R}_{\mathrm{m}}} \\
\mathrm{v}_{\mathrm{m} 1}^{*}=\frac{\mathrm{v}_{\mathrm{m} 1}}{\omega \mathrm{R}_{\mathrm{m}}} & ; & \mathrm{v}_{\mathrm{m} 2}=\frac{\mathrm{v}_{\mathrm{m} 2}}{\omega \mathrm{R}_{\mathrm{m}}}
\end{array}
$$

Then, Eq. 42 rewritten is

$$
\begin{equation*}
v_{u 2}^{*}=\frac{1}{2 r_{2}}\left(x+r_{1}^{2}\right) \tag{45}
\end{equation*}
$$

and Eq. 43 becomes

$$
\frac{\partial\left(V_{a 2}^{*}\right)^{2}}{\partial r_{2}}=-\left[\frac{X}{r_{2}{ }^{2}}+\left(\frac{r_{1}}{r_{2}}\right)^{2}\right] \frac{1}{2} \frac{\partial\left(X+r_{1}{ }^{2}\right)}{\partial r_{2}}
$$

Since X is a constant,

$$
\begin{equation*}
\left.\frac{\partial\left(\mathrm{V}_{\mathrm{a} 2}^{*}\right.}{\partial \mathrm{r}_{2}}\right)^{2}=-\left[\frac{\mathrm{X}+\mathrm{r}_{1}{ }^{2}}{\mathrm{r}_{2}{ }^{2}}\right] \mathrm{r}_{1} \frac{\partial \mathrm{r}_{1}}{\partial \mathrm{r}_{2}}=-\mathrm{f}\left(\mathrm{r}_{2}\right) \tag{46}
\end{equation*}
$$

Hence, if r_{1} is known as a function of r_{2}, the function $f\left(r_{2}\right)$ can be established. Denoting the as yet unknown value of $\mathrm{V}_{\mathrm{a} 2}^{*}$ at $\mathrm{r}_{2}=1$ by $\mathrm{V}_{\mathrm{m} 2}{ }^{*}$, the integration of Eq. 46 gives

$$
\begin{equation*}
\left(v_{a 2}^{*}\right)^{2}=\left(v_{m 2}^{*}\right)^{2}-\int_{1}^{r_{2}} f\left(r_{2}\right) d r_{2} \tag{47}
\end{equation*}
$$

The quantity $\mathrm{V}_{\mathrm{m} 2}{ }^{*}$ must be obtained by iterations with the help of the equation of continuity. Figure 4 shows that the pressure rise per stage does not exceed 16 inches of water. In a stage with 50 percent reaction the pressure rise in the rotor is then about 8 inches of water, giving a pressure ratio of about 1.02 for an inlet pressure of 14.7 psia. The ratio ρ_{2} / ρ_{1} of the mass density after and ahead of the rotor will therefore not exceed a value of 1.014 .

The volume flow rate Q_{1} ahead of the rotor between the hub radius $R_{1 h}$ and an arbitrary radius R_{1} is

$$
Q_{1}=2 \pi \int_{R_{1 h}}^{R_{1}} R_{1} V_{a l} d R_{1}
$$

With the quantities of Eq. 44 let

$$
\begin{equation*}
Q_{1}=2 \pi \omega R_{m}^{3} Q_{1}^{*} \tag{48}
\end{equation*}
$$

by introducing the dimensionless quantity

$$
\begin{equation*}
\mathrm{Q}_{1}{ }^{*}=\int_{\mathrm{R}_{1 \mathrm{~h}} / \mathrm{R}_{\mathrm{m}}}^{\mathrm{r}_{1}} \mathrm{r}_{1} \mathrm{Va}_{1}{ }^{*} \mathrm{~d} \mathrm{r}_{1} \tag{49}
\end{equation*}
$$

The total volume flow rate $Q_{1 \text { max }}$ ahead of the rotor is

$$
\begin{equation*}
Q_{1 \max }=2 \pi \omega R_{m}^{3} Q_{1 \max }^{*} \tag{50}
\end{equation*}
$$

where $Q_{1 m a x}^{*}$ is obtained from Eq. 49 for the upper limit $r_{1}=R_{1 t} / R_{m}$ of the integral, where R is the tip radius.

Similarly, for the conditions after the rotor the volume flow rate Q_{2} between $R_{2 h}$ and R_{2} is

$$
\begin{equation*}
\mathrm{Q}_{2}=2 \pi \omega \mathrm{R}_{\mathrm{m}}^{3} \mathrm{Q}_{2}^{*} \tag{51}
\end{equation*}
$$

with $Q_{2}^{*}=\int_{R_{2 h} / R_{m}}^{r_{2}} \mathrm{r}_{2} \mathrm{~V}^{*}{ }^{*} \mathrm{dr} r_{2}$

The total volume flow rate $Q_{2 \text { max }}$ at station 2 is

$$
\begin{equation*}
Q_{2 \max }=2 \pi \omega R_{m}^{3} Q_{2 \max }^{*} \tag{53}
\end{equation*}
$$

The quantity $Q_{2 \text { max }}^{*}$ is obtained from Eq. 52 for the upper limit $r_{2}=R_{2 t} / R_{m}$ of the integral.

The equality of the mass flow rates at stations (1) and (2) can be expressed by

$$
\bar{\rho}_{1} Q_{\max }=\bar{\rho}_{2} Q_{2 \max } k_{b}^{\prime}
$$

where $\bar{\rho}_{1}, \bar{\rho}_{2}$ are the average mass densities at (1) and (2), and k_{B}, is the somcalled blockage factor that takes account of the increased regions of reduced velocity in the so-called wall boundary layers near the hub and the tip at station (2), compared to those at station (1). Then, with Eqs. 50 and 53

$$
\begin{equation*}
Q_{2 \max }^{*}=\frac{Q_{1 \text { max }}^{*}}{\left(\bar{\rho}_{2} / \bar{\rho}_{1}\right) k_{B},}=\frac{Q_{1 \max }^{*}}{k_{B}} \tag{54}
\end{equation*}
$$

Experience shows that the blockage factor k_{B} ' varies between 0.96 and 0.97 . Hence, since $\bar{\rho}_{2} / \bar{\rho} \cong 1.014$, the quantity $Q_{2 \text { max }}^{*}$ will be determined by Eq. 54 with 1 a factor $k_{B}=(1.014)(0.965)=0.98$ for the value of $Q_{1 \text { max }}^{*}$ obtained from Eq. 49. This value of $Q_{2 \text { max }}^{*}$ is used to

$$
\begin{equation*}
\left.\frac{\partial\left(V_{a 2}^{*}\right.}{\partial r_{2}}\right)^{2}=-\left[\frac{X+r_{1}{ }^{2}}{r_{2}{ }^{2}}\right] r_{1} \frac{\partial r_{1}}{\partial r_{2}}=-f\left(r_{2}\right) \tag{46}
\end{equation*}
$$

Hence, if r_{1} is known as a function of r_{2}, the function $f\left(r_{2}\right)$ can be established. Denoting the as yet unknown value of $V_{a 2}{ }^{*}$ at $r_{2}=1$ by $\mathrm{V}_{\mathrm{m} 2}{ }^{*}$, the integration of Eq. 46 gives

$$
\begin{equation*}
\left(v_{a 2}^{*}\right)^{2}=\left(v_{m 2}^{*}\right)^{2}-\int_{1}^{r} f\left(r_{2}\right) d r_{2} \tag{47}
\end{equation*}
$$

The quantity $\mathrm{V}_{\mathrm{m} 2}{ }^{*}$ must be obtained by iterations with the help of the equation of continuity. Figure 4 shows that the pressure rise per stage does not exceed 16 inches of water. In a stage with 50 percent reaction the pressure rise in the rotor is then about 8 inches of water, giving a pressure ratio of about 1.02 for an inlet pressure of 14.7 psia. The ratio ρ_{2} / ρ_{1} of the mass density after and ahead of the rotor will therefore not exceed a value of 1.014 .

The volume flow rate Q_{1} ahead of the rotor between the hub radius $R_{1 h}$ and an arbitrary radius R_{1} is

$$
Q_{1}=2 \pi \int_{R_{1 h}}^{R_{1}} \mathrm{R}_{1} V_{a l} \mathrm{dR}_{1}
$$

With the quantities of Eq. 44 let

$$
\begin{equation*}
Q_{1}=2 \pi \omega R_{m}^{3} Q_{1}^{*} \tag{48}
\end{equation*}
$$

by introducing the dimensionless quantity

$$
\begin{equation*}
\mathrm{Q}_{1}^{*}=\int_{\mathrm{R}_{1 \mathrm{~h}} / \mathrm{R}_{\mathrm{m}}}^{\mathrm{r}_{1}} \mathrm{r}_{1} \mathrm{Va}_{1}^{*} \mathrm{dr} \mathrm{r}_{1} \tag{49}
\end{equation*}
$$

The total volume flow rate $\mathrm{Q}_{1 \text { max }}$ ahead of the rotor is

$$
\begin{equation*}
Q_{1 \text { max }}=2 \pi \omega R_{m}^{3} Q_{1 \max }^{\star} \tag{50}
\end{equation*}
$$

where $Q_{1 \text { max }}^{*}$ is obtained from Eq. 49 for the upper limit $r_{1}=R_{1 t} / R_{m}$ of the integral, where $R_{1 t}$ is the tip radius.

Similarly, for the conditions after the rotor the volume flow rate Q_{2} between $R_{2 h}$ and R_{2} is

$$
\begin{equation*}
Q_{2}=2 \pi \omega R_{m}^{3} Q_{2}^{*} \tag{51}
\end{equation*}
$$

with $Q_{2}^{*}=\int_{R_{2 h} / R_{m}}^{r_{2}} \mathrm{r}_{2} \mathrm{~V}^{*}{ }^{*} \mathrm{dr} r_{2}$

The total volume flow rate $Q_{2 \text { max }}$ at station 2 is

$$
\begin{equation*}
Q_{2 \max }=2 \pi \omega R_{m}^{3} Q_{2 \max }^{*} \tag{53}
\end{equation*}
$$

The quantity $Q_{2 \text { max }}^{*}$ is obtained from Eq. 52 for the upper limit $r_{2}=R_{2 t} / R_{m}$ of the integral.

The equality of the mass flow rates at stations (1) and (2) can be expressed by

$$
\bar{\rho}_{1} Q_{\max }=\bar{\rho}_{2} Q_{2 \max } \mathrm{k}_{\mathrm{B}}
$$

where $\bar{\rho}_{1}, \bar{\rho}_{2}$ are the average mass densities at (1) and (2), and k_{B},
is the so-called blockage factor that takes account of the increased regions of reduced velocity in the so-called wall boundary layers near the hub and the tip at station (2), compared to those at station (1). Then, with Eqs. 50 and 53

$$
\begin{equation*}
Q_{2 \max }^{*}=\frac{Q_{1 \max }^{*}}{\left(\bar{\rho}_{2} / \bar{\rho}_{1}\right) k_{B},}=\frac{Q_{1 \max }^{*}}{k_{B}} \tag{54}
\end{equation*}
$$

Experience shows that the blockage factor k_{B} ' varies between 0.96 and 0.97. Hence, since $\bar{\rho}_{2} / \bar{\rho} \cong 1.014$, the quantity $Q_{2 \text { max }}^{*}$ will be determined by Eq. 54 with $^{1}{ }^{1}$ a factor $k_{B}=(1.014)(0.965)=0.98$ for the value of $Q_{1 \text { max }}^{*}$ obtained from Eq. 49. This value of $Q_{2 \text { max }}^{*}$ is used to
check whether the distribution of $\mathrm{V}_{\mathrm{a} 2}{ }^{*}$ along r_{2}, obtained from Eq. 47 with a chosen value of $V_{m}{ }^{*}$, meets the continuity requirements. To this end the ratios $V_{a 2}^{*}$, thus determined, are introduced into Eq. 52 and integrated from R_{*} / R_{m} to $R_{2 t} / R_{m}$. If the resulting quantity $Q_{2 \text { max }}^{*}$ differs from $Q_{1 \text { max }}^{*} / k_{B}$ of Eq. 54 , the process must be repeated with a new value of $\mathrm{V}_{\mathrm{m} 2}{ }^{*}$ until agreement is reached. However, the final distribution of $\mathrm{V}_{\mathrm{a} 2}{ }^{*}$ along r_{2} must also produce the same radial shift of the streamlines as was determined from the first approximation, and which was used to establish the function $f\left(r_{2}\right)$ of Eq. 46 and $\mathrm{V}_{\mathrm{a} 2}{ }^{*}$ by Eq. 47. The equation of continuity is again used to obtain r_{2} as function of r_{1} from the new $V_{a 2}{ }^{*}$ - distribution. If this relationship between r_{2} and r_{1} differs from the one obtained with the data of the first approximation, it must be used to establish a new function $f\left(r_{2}\right)$ of Eq. 46 which has to be introduced into Eq. 47 to calculate $\mathrm{V}_{\mathrm{a} 2}{ }^{*}$. This process requires the same iterations for $\mathrm{V}_{\mathrm{m} 2}{ }^{\text {* }}$ as discussed above. The iterative procedure must be repeated until the functions r_{2} vs. r_{1} assumed for the determination of $f\left(r_{2}\right)$ and that obtained from the resulting profile of $\mathrm{V}_{\mathrm{a} 2}{ }^{*}$ are identical.

7. RESULTS OF FLOW CALCULATIONS

Table V lists the ratios $V_{a 1}{ }^{*}$ and $V_{a 2}{ }^{*}$ of Table IV, and additional values at other radius ratios, which were used to calculate the quantities $\mathrm{Q}_{1}{ }^{*}$ and $\mathrm{Q}_{2}{ }^{*}$ in accordance with Eqs. 49 and 52, by integrations with the trapezoidal rule. It can be noted that the initial assumption $V_{m l}=V_{m 2}=V_{m}$ does not satisfy continuity since $Q_{2 \text { max }}^{*}$ is (0.9832) $Q_{1 \text { max }}^{*}$, whereas by Eq. 54 with $k_{B}=0.98$ it should be (1.0204) $Q_{1 \text { max },}^{*}$ or equal to 0.404947 .

The ratios $Q_{1} / Q_{1 \text { max }}$, and $Q_{2} / Q_{2 \max }$ of Table V are plotted in Fig. 9. For the condition $Q_{2} / Q_{2 \max }=Q_{1} / Q_{1 \text { max }}$, the radius ratio r_{2} for a stream surface that has the radius ratio r_{1} ahead of the rotor can be read on the upper horizontal scale of the figure. The relationship r_{1} vs. r_{2} thus obtained is shown in Fig. 10, which also gives a curve $\Delta r=\left(r_{1}-r_{2}\right)$ as function of r_{2} in a larger scale drawn through the data points. From this curve were obtained the derivatives $\partial(\Delta r) / \partial r_{2}$ by graphical means. Then

$$
\begin{equation*}
\frac{\partial r_{1}}{\partial \dot{r}_{2}}=\frac{\partial\left(r_{2}+\Delta r\right)}{\partial r_{2}}-1+\frac{\partial(\Delta r)}{\partial r_{2}} \tag{55}
\end{equation*}
$$

The numerical values of these derivatives and of r_{1} for different ratios r_{2} are listed in Table VI, together with the function $f\left(r_{2}\right)$ of Eq. 46 for $\mathrm{X}=0.36578$.

The function $f\left(r_{2}\right)$ is plotted in Fig. 11. Interpolated values between the calculated points were used to integrate $f\left(r_{2}\right)$ with Simpson's rule, i.e. by placing a parabola through three neighboring points. The results of the integration in accordance with Eq. 47 are listed in Table VI and plotted in Fig. 11. Table VI also shows the calculated values of $V_{a 2}{ }^{*}$ in accordance with Eq. 47, for several assumed values of $\mathrm{V}_{\mathrm{m} 2}{ }^{*}$, and the corresponding magnitudes of $\mathrm{Q}_{2}{ }^{*}$ of Eq. 52 obtained by integrations with the trapezoidal rule. As pointed out earlier, the value of $Q_{2}{ }^{*}$ at $r_{2}=1.25$, which is denoted by $Q_{2 \text { max }}^{*}$, should equal 0.404947. For $V_{m 2}=0.838$ this condition is closely realized and the corresponding values of $\mathrm{V}_{\mathrm{a} 2}{ }^{*}$ are taken to satisfy the continuity requirement. For $\mathrm{V}_{\mathrm{m} 2}{ }^{*}=0.838$ the ratios $Q_{2} / Q_{2 \text { max }}$ are shown in Table VI also.

It must now be checked whether the relation between r_{1} and r_{2} from the first approximation of Fig. 9, which was used to calculate the velocity distributions of Table VI, agrees with the function r_{2} vs. r_{1} that is obtained from the second approximation. Since the change of $\mathrm{V}_{\mathrm{ul}}{ }^{*}$ along r_{1}, hence of $\mathrm{V}_{\mathrm{al}}{ }^{*}$ along r_{1}, is the same for both approximations, this check can be made by plotting $Q_{2} / Q_{2 \text { max }}$ as function of r_{2} for both sets of data. Figure 12 shows a curve of $Q_{2} / Q_{2 \text { max }}$ vs. r_{2} drawn through the values of Fig. 9 which are marked by crosses. The data points given by circles in Fig. 12 represent the values of Table VI for $\mathrm{V}_{\mathrm{m} 2}^{*}=0.838$. It can be noted that these points lie very closely on the curve of the first approximation, hence additional iterations are unnecessary, and the data inside the heavily framed portion of Table VI can be considered to represent the actual flow conditions after the rotor for the set of initial assumptions; that is, if curvature effects and entropy gradients are ignored. This final distribution of $\mathrm{V}_{\mathrm{a} 2}{ }^{*}$ is also shown by the dash-dotted curve in Fig. 8.

Table VII summarizes the flow properties ahead of and after the rotor in accordance with the data of Table VI. Since the velocity diagram of the blading is that of Fig. 3, there are, with Eq. 41

$$
\begin{equation*}
V_{u l}^{*}=\frac{V_{u l}}{\omega R_{m}}=-\frac{X}{2 r_{1}}+\frac{r_{1}}{2} \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{u l}^{*}=\frac{W_{u l}}{\omega R_{m}}=\frac{\omega R_{1}-V_{u l}}{\omega R_{m}}=r_{1}-V_{u l}^{*}=\frac{X}{2 r_{1}}+\frac{r_{1}}{2} \tag{57}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\tan \alpha_{1}=\frac{\mathrm{V}_{\mathrm{ul}}^{*}}{\mathrm{~V}_{\mathrm{al}}^{*}} \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan B_{1}=\frac{W_{u l}^{*}}{V_{a l^{\star}}^{\star}} \tag{59}
\end{equation*}
$$

With Eq. 45 and from Fig. 3

$$
\begin{equation*}
W_{u 2}^{*}=\frac{W_{u 2}}{\omega R_{m}}=\frac{\omega R_{2}-V_{u 2}}{\omega R_{m}}=r_{2}-V_{u 2}^{*} \tag{60}
\end{equation*}
$$

and

$$
\begin{align*}
\tan \alpha_{2} & =\frac{\mathrm{V}_{\mathrm{u} 2}^{\star}}{\mathrm{V}_{\mathrm{a} 2}^{*}} \tag{61}\\
\tan \beta_{2} & =\frac{\mathrm{W}_{\mathrm{u} 2}^{*}}{\mathrm{~V}_{\mathrm{a} 2}^{\star}} \tag{62}
\end{align*}
$$

Also

$$
\begin{align*}
V_{1}^{*} & =\frac{V_{1}}{\omega R_{m}}=\frac{V_{a 1}}{\cos \alpha_{1}} \tag{63}\\
W_{1}^{*} & =\frac{W_{1}}{\omega R_{m}}=\frac{V_{a 1}^{*}}{\cos B_{1}} \tag{64}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{V}_{2}^{*}=\frac{\mathrm{V}_{2}}{\omega \mathrm{R}_{\mathrm{m}}}=\frac{\mathrm{V}_{\mathrm{a} 2}^{*}}{\cos \alpha_{2}} \tag{65}\\
& \mathrm{~W}_{2}^{*}=\frac{\mathrm{W}_{2}}{\omega \mathrm{R}_{\mathrm{m}}}=\frac{\mathrm{V}_{\mathrm{a} 2}^{*}}{\cos \beta_{2}} \tag{66}
\end{align*}
$$

Table VII also lists the NASA diffusion factors of Eqs. 17 and 18 , where the subscripts o in $\left(D_{R}\right)_{o}$ and $\left(D_{S}\right)_{o}$ indicate that these factors are for a solidity $\sigma=\sigma_{m}=1$ at $R / R_{m}=1$, and that the chord of the rotor and stator blades does not change in radial direction. In actuality the diffusion factors should be calculated for the conditions along the stream surfaces by taking account of their radial shift. Then, by Ref. 3, for the rotor

$$
\begin{equation*}
D_{R}=1-\frac{W_{2}}{W_{1}}+\frac{R_{1} W_{u 1}-R_{2} W_{u 2}}{\sigma_{R}\left(R_{1}+R_{2}\right) W_{1}} \tag{67}
\end{equation*}
$$

A similar expression is defined in Ref. 3 for stators. However, in the present case where the radial shift is slight, the relations of Eqs. 17 and 18 can be used with very small error. In fact, the differences are so insignificant that the blade profiles in stator and rotor will be determined for cylindrical stream surfaces, with the actual flow angles of Table VII, instead of along the actual stream surfaces. This procedure avoids the difficulties associated with the definition of the blade shapes for manufacturing purposes. If the profiles are considered to lie on arbitrary stream surfaces, the resulting blade shapes must later be intersected by cylinders, or by planes tangent to them, to be able to obtain profile coordinates that can be used and checked during manufacture with reasonable cost. The available calculating methods for the profile shapes and their angular orientation are not accurate enough to warrant the difficulties associated with the afore-mentioned procedure, particularly not because the theoretical, axisymmetric,stream surfaces are very nearly cylindrical in the present case. It must also be recognized that the actual stream surfaces in a blade row are not axisymmetric, hence particles that move along the two sides of a blade travel along different paths with different radif so that the flow
does not have the same two-dimensional character that exists in rectilinear cascade test rigs which were used to establish the profile design data.

In addition to, or as a replacement of the diffusion factor, the so-called equivalent diffusion ratio $D_{E Q}$ is frequently used to establish the blade loading limits and the profile losses, especially if the flow incidence angles differ from those for minimum losses. By Ref. 4, for rotors at the design incidence angle, and for flows with varying through-flow components on cylindrical stream surfaces,

$$
\begin{equation*}
D_{E Q R}=\frac{W_{1}}{W_{2}} \quad\left[1.12+\frac{0.61}{\sigma_{R}} \cos ^{2} \beta_{1} \frac{2 \Delta W_{u}}{V_{a 1}+V_{a 2}}\right] \tag{68}
\end{equation*}
$$

For stators at the same conditions,

$$
\begin{equation*}
D_{E Q S}=\frac{v_{2}}{v_{1}}\left[1.12+\frac{0.61}{\sigma_{S}} \cos ^{2} \alpha_{2} \frac{2 \Delta V_{u}}{v_{a 1}+V_{a 2}}\right] \tag{69}
\end{equation*}
$$

Experience has shown that the quantities $D_{E Q}$ should not exceed values of about 1.7 since incipient flow separation is likely to occur for $D_{E Q}$ between 2.0 and 2.2. The subscripts o in ($D_{E Q R}$) and ($\left.D_{\text {EQS }}\right)_{o}$
of Table VII indicate that $\sigma_{R}=\sigma_{S}=1$ at the mean radius R_{m} and that the blades have constant chord at all radif.

8. BLADE PROFILES AND STAGGER ANGLES

The thickness distribution of Fig. 13 will be used for the profiles of the stator and rotor blades. It corresponds to a C. 4 base profile (See Ref. 5), except for the portions near the entrance which were thinned to arrange a smaller leading edge radius. The camber line of the profile is supposed to be a circular arc. Figure 14 shows the method that will be adopted to determine the profile coordinates for known camber angles α and maximum thickness ratios t / c. The orientation of the blade profiles in the cascade is fixed by the stagger angle γ as indicated in Fig. 14.

The profile data are determined with the two-dimensional method of chapter VI of Ref. 6, without taking account of the corrections for three-dimensional effects that are given in chapter VII of Ref. 6 . It is felt that these corrections are not sufficiently well supported by experiments. Moreover, since the blades in the test compressor can be set at different angles the twist of the profiles along the blade height is more important than the stagger angle per se.

The camber angle ϕ for a rotor profile is obtained from

$$
\begin{equation*}
\phi=\frac{\Delta \beta-1_{0}+\delta_{0}}{1-m+n} \tag{70}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta \beta=\beta_{1}-\beta_{2} \\
& i_{0}=\left(K_{i}\right)_{s h}\left(K_{i}\right)_{t}\left(i_{0}\right)_{10} \tag{71}\\
& \delta_{0}=\left(K_{\delta}\right)_{s h}\left(K_{\delta}\right)_{t}\left(\delta_{0}\right)_{10} \tag{72}\\
& \left(i_{0}\right)_{10}=\text { zero camber incidence angle for } t / c=0.1 \\
& \left(\delta_{0}\right)_{10}=\text { zero camber deviation angle for } t / c=0.1
\end{align*}
$$

The recommended value of the correction factors $\left(K_{i}\right)_{s h}$ and $\left(K_{\delta}\right)$ sh is 1.1 for $C .4$ profiles. The design incidence angle 1 for minimum loss is

$$
\begin{equation*}
1=1_{0}+n \phi \tag{73}
\end{equation*}
$$

and the deviation angle δ for these conditions is

$$
\begin{equation*}
\delta=\delta_{0}+m \phi \tag{74}
\end{equation*}
$$

The quantities $\left(i_{0}\right),\left(\delta_{0}\right), m$, and n are functions of the inlet flow angle β_{1} and the blade 10 solidity σ. The correction factor $\left(K_{i}\right)$ and $\left(K_{\delta}\right)_{t}$ depend on the thickness ratio t / c only. The blade stagger angle γ of Fig . 14 is equal to

$$
\begin{equation*}
\gamma=\beta_{1}-i-\frac{\phi}{2} \tag{75}
\end{equation*}
$$

The stator blade profiles are obtained with Eqs. 70 to 74 also if β_{1} is replaced by α_{2}, and $\Delta \beta$ by $\Delta \alpha=\alpha_{2}-\alpha_{1}$. The blade stagger angle is then

$$
\begin{equation*}
r=\alpha_{2}-i-\frac{\phi}{2} \tag{76}
\end{equation*}
$$

For particular conditions the method of Ref. 6 gives excessively large negative incidence angles. Although negative incidence angles are beneficial for good stall margins, they may cause increased losses at the design point because of separations on the pressure side near the leading edge, especially if the latter has a small radius. If the above-mentioned situation occurs, reduced negative incidence angle i' will be assumed. Reference 6 shows that for these conditions the corresponding deviation angle δ is obtained from

$$
\begin{equation*}
\delta^{\prime}=\delta+\left(i^{\prime}-1\right)\left(\frac{d \delta}{d i}\right) \tag{77}
\end{equation*}
$$

where the function ($d \delta / d i$) depends on solidity and inlet flow angle. For a stator blade profile, for instance, there is

$$
\Delta \alpha=\phi+1-\delta=\phi^{\prime}+i^{\prime}-\delta^{\prime}
$$

where the first expression on the right-hand side holds for the design conditions obtained with the usual approach, whereas the second holds for an assumed incidence angle 1 ' from which the necessary blade camber angle ϕ^{\prime} can be determined. With Eq. 77

$$
\begin{equation*}
\phi^{\prime}=\Delta \alpha-i^{\prime}+\delta^{\prime}=\Delta \alpha-i^{\prime}+\delta+\left(i^{\prime}-i\right)\left(\frac{d \delta}{d i}\right) \tag{78}
\end{equation*}
$$

For this modified camber, the blade stagger angle γ ' of a stator is $\gamma^{\prime}=\alpha_{2}-i^{\prime}-\frac{\phi^{2}}{}{ }^{\prime}$

The axial distances between the blade rows of the compressor are 2.875 inches. The axial clearance between the rows must be about 0.5 in. to provide room for flow survey probes, so that the axial blade widths must be less than about 2.4 inches. Further, since each rotor has 30 and each stator 32 blades, the solidites of the rotor and the
stator cascades must remain within certain limits.
The diffusion factors D and the equivalent diffusion ratios $D_{E Q}$
of Table VII are measures for the aerodynamic loading of the blade profiles in a cascade. Excessive loading is associated with flow separations, increased losses, and reduced efficiencies. At low blade loadings the efficiency of the cascade is decreased also because of large boundary layer losses. Optimum efficiencies of a row of blades are obtained if at all radii the blade profiles have the highest possible loading and the same margin of safety against stalling. The choice of the latter depends on the operating characteristics of the system for which the compressor is used.

Table VII shows that this condition is not realized in symmetrical bladings with blades of constant chord. The diffusion factor of the rotor is highest at the outer radius and very much below permissible limits at the hub radius. The opposite trend would give a better performance since it is known that for the same diffusion factor the losses are higher at the rotor tip than at the hub. The data for the stator in Table VII show that the profiles are lightly loaded at the outer radius and have increased loading at the hub radius. For stators with radial clearance gaps at the hub radius the loading should be reversed also to obtain optinum performance, since the stator losses near the hub radius are larger than those at other radii even if the diffusion factor were constant everywhere along the blade.

Within the limitations imposed by the rotor and stator blade numbers and the necessity of maintaining sufficiently large axial blade clearances for the arrangement of flow survey probes, the blade chords of rotor and stator will be varied along the radius to slightly improve the distributions of the diffusion factors of Table VII. The chosen chords for the rotor blades are given in Table VIII, those for the stator blades in Table IX. From Table VIII it can be seen that, whereas for constant chord the factor D_{R} for the rotor changed from 0.2062 to 0.4376 from hub to tip, it now has values of 0.2498 and 0.4274 at these respective stations. The stator solidities obtained with the chosen chords are generally lower than those for constant chord in Table VII, which gave variations of D_{S} from 0.4107 to 0.3326 from hub to tip. By Table IX these respective values are 0.4240 and 0.3762 for the stator blades
with varying chord. These data show that with the symmetrical blading of Fig. 3 the earlier-mentioned optimum blade loadings cannot be achieved by varying the blade chord. Symmetrical bladings produce favorable conditions as far as the uniformity of the inlet flow velocities along the radius is concerned. Table VII shows for instance that the relative rotor inlet velocity W_{1} decreases from 100 percent at the hub to 95.5 percent at the tip. The stator inlet velocity V_{2} decrease in radial direction also, namely, from 100 percent at the hub to 81 percent at the outer radius. The actual magnitudes of W_{1} and V_{2} are nearly equal. Hence, in contrast to other blading types, symmetrical bladings are not Mach number limited by the conditions at the outer radius. For a given maximum Mach number, they can operate at higher peripheral speeds than other bladings and are therefore capable of producing a higher pressure rise per stage.

The best design of a blading would however be one that has uniform and equal velocities W_{1} and V_{2} along the radius, which are small with respect to the peripheral speed, and where the diffusion factors for all profiles are as high as the necessary stall margins permit. Investigations whether such bladings are possible will be carried out with a new computer program that is based on the calculating approach of this report, but with the additional refinement that the effect of the different losses along the radius will be taken into account.

The profile thicknesses of Table VIII and IX were chosen for practical and aerodynamic reasons. For the rotor the blade thickness increases about parabolically from tip to hub to obtain reduced centrifugal stresses, and the thickness of the stator blades varies about linearly to obtain small ratios t / c at the hub radius, and sufficient blade thickness at the outer radius for the attachment of the blade to its root section with the circular platform that is shown in Fig. 9 of Ref.1.

Whereas the incidence angles 1 of the rotor blade profiles of Table VIII seem reasonable, excessively large negative incidence angle are obtained with the design method of Ref. 6 for the stator profiles of Table IX at large radif. The data inside the heavily framed portion of Table IX are therefore replaced by those for the assumed incidence angles 1 . The last lines in Tables VIII and IX give the axial widths of the rotor and stator blade profiles. For an axial spacing of 2.875 in.
of the stator and rotor rows, the average axial clearance between the rows is $2: 875-\left(1_{\text {axr }}+1_{\text {axs }}\right) / 2$. Hence this axial clearance is about 0.47 in . at the hub radius and 0.76 in . at the outer radius. These clearances are large enough for blades with the usual radial stacking line through the centers of gravity of the different profiles. It must however be examined whether for blades with swept-back leading edges, which are to be tested during the program, the blade chords of Tables VIII and IX permit to arrange inter-stage instrumentation.

The data of Tables VIII and IX will be used to establish the profile coordinates with the relations of Fig. 14. For each profile there must be determined its cross-sectional area, the coordinates of the center of gravity and the angles of the principal axes with respect to the reference line of Fig. 14, and the minimum and maximum moments of inertia. These quantities are necessary to establish the stresses and the vibratory characteristics for particular three-dimensional arrangements of the profiles in the build-up of the blades.
9. COMPRESSOR PERFORMANCE.

If the losses in the inlet guide vanes of the compressor are ignored, the total pressure $P_{t 1}$ ahead of the first rotor at station (1) is everywhere constant. However the static pressure p_{1} at station (1) changes along the radius, since for incompressible flows

$$
\begin{equation*}
p_{1}=p_{t 1}-\frac{\rho}{2} v_{1}^{2} \tag{80}
\end{equation*}
$$

At station (2) after the rotor the total and static pressures are denoted by $\mathrm{P}_{\mathrm{t} 2}$ and P_{2},
where

$$
\begin{equation*}
p_{2}=P_{t 2}-\frac{\rho}{2} v_{2}^{2} \tag{81}
\end{equation*}
$$

In contrast to prior usage in this report the region after the stator is called station (3). At this station exist the same velocities and flow angles as at station (1) but the pressures differ from those at (1), and the static and total pressures P_{3} and $P_{t 3}$ are related by

$$
\begin{equation*}
p_{3}=p_{t_{3}}-\frac{p}{2} v_{1}^{2} \tag{82}
\end{equation*}
$$

From Eq. $7(44)$ of Ref. 2 the conditions along a streamline in the rotor between stations (1) and (2) can be expressed by

$$
\begin{equation*}
p_{2}+\frac{\rho}{2} W_{2}^{2}-\frac{\rho}{2} \omega^{2} R_{2}^{2}=p_{1}+\frac{\rho}{2} W_{1}^{2}-\frac{\rho}{2} \omega^{2} R_{1}^{2}-\Delta P_{R} \tag{83}
\end{equation*}
$$

where ΔP_{R} represents the losses in the rotor. In Eq. 83 the differences in the geopotential energies of the fluis are ignored. It is customary (See Ref. 6) to express the rotor losses by

$$
\begin{equation*}
\Delta P_{R}=Y_{R} \frac{\rho}{2} W_{1}^{2} \tag{84}
\end{equation*}
$$

In Ref. 3 the pressure loss coefficient Y_{R} is related to the diffusion factor D_{R} and the rotor solidity σ_{R} by

$$
\begin{equation*}
Y_{R}=\frac{2 \sigma_{R}}{\cos \beta_{2}}\left[0.004+0.0639\left(D_{R}+0.1\right)^{2.91}+0.228 D_{R}^{2.02}\left(1-\lambda_{R}\right)^{3.77}\right] \tag{85}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{R}=\frac{R_{2 t}-R_{2}}{R_{2 t}-R_{2 h}}=\frac{r_{2 t}-r_{2}}{r_{2 t}-r_{2 h}} \tag{86}
\end{equation*}
$$

The subscripts t and h refer to the outer and hub radius, respectively. Equation 85 is an approximate mathematical formulation of the empirical loss correlations of Ref. 6 which attempt to account for tip clearance effects with the factor λ_{R}, which increases the losses toward the rotor blade tip.

In Ref. 6 the loss in total pressure in the stator blade row is defined by

$$
\begin{equation*}
\Delta P_{S}=P_{t 2}-P_{t 3}=Y_{S} \frac{\rho}{2} V_{2}^{2} \tag{87}
\end{equation*}
$$

where by Ref. 3 the stator loss coefficient Y_{S} can be approximated by
$Y_{S}=\frac{2 \sigma_{S}}{\cos \alpha_{1}}\left[0.004+0.0639\left(D_{S}+0.1\right)^{2.91}+0.057 D_{S}^{2.02}\left(1-\lambda_{S}\right)^{3.77}\right]$

The quantities σ_{S} and D_{S} are the stator solidity and the stator diffusion factor, respectively, and

$$
\begin{equation*}
\lambda_{S}=\frac{R_{1}-R_{1 h}}{R_{i t}-R_{1 h}} \tag{89}
\end{equation*}
$$

Due to the ratio λ_{S} the loss coefficients Y_{S} of Eq. 88 increase toward the hub radius where the stator blades have a radial clearance gap. Evidently Eqs. 84 and 88 do not take proper account of the tip clearance and end losses. A discussion in Section 13.7 of Ref. 2 shows that these losses must depend on the blade loading, the ratio of tip clearance and blade height, and the ratio of blade spacing and blade height, in addition to solidity. The present research program endeavors to establish a better and more physically correct evaluation of the end losses and tries to investigate whether peculiar blade shapes can be used to minimise their detrimental effects on stage performance. From Fig. 3

$$
\begin{aligned}
& \mathrm{W}_{1}^{2}=\left(\omega \mathrm{R}_{1}-\mathrm{V}_{\mathrm{u} 1}\right)^{2}+\mathrm{V}_{\mathrm{al}}^{2}=\omega^{2} \mathrm{R}_{1}^{2}-2 \omega \mathrm{R}_{1} \mathrm{~V}_{\mathrm{u} 1}+\mathrm{v}_{1}^{2} \\
& \mathrm{~W}_{2}^{2}=\left(\omega \mathrm{R}_{2}-\mathrm{V}_{\mathrm{u} 2}\right)^{2}+\mathrm{V}_{\mathrm{a} 2}^{2}=\omega^{2} \mathrm{R}_{2}^{2}-2 \omega \mathrm{R}_{2} \mathrm{~V}_{\mathrm{u} 2}+\mathrm{v}_{2}^{2}
\end{aligned}
$$

Introduced in Eq. 83, and with Eq. 84,

$$
p_{2}+\frac{\rho}{2} V_{2}^{2}=p_{1}+\frac{\rho}{2} V_{1}^{2}+\rho \omega\left(R_{2} V{ }_{u 2}-R_{1} V_{u 1}\right)-Y_{R} \frac{\rho}{2} W_{1}^{2}
$$

With Eqs. 39, 40, 80, and 81

$$
\begin{equation*}
P_{t 2}-P_{t 1}=\rho \omega^{2} R_{m}^{2} X-Y_{R} \frac{\rho}{2} W_{1}^{2} \tag{90}
\end{equation*}
$$

where X is a constant, equal to 0.36578 , for the bladings under consideration. With Eq. 64 the above relations, rewritten, gives

$$
\begin{equation*}
\pi_{t 2}=\frac{P_{t 2}-P_{t 1}}{\rho \omega^{2} R_{m}^{2}}=X-\frac{Y_{R}}{2}\left(W_{1}^{*}\right)^{2} \tag{91}
\end{equation*}
$$

From Eq. 87, with Eq. 65

$$
\begin{equation*}
\frac{P_{t 2}-P_{t 3}}{\rho \omega^{2} R_{m}^{2}}=\frac{Y_{S}}{2}\left(V_{2}^{*}\right)^{2} \tag{92}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{t 3}=\frac{P_{t 3}-P_{t 1}}{\rho \omega^{2} R_{m}^{2}}=X-\frac{Y_{R}}{2}\left(W_{1}^{*}\right)^{2}-\frac{Y_{S}}{2}\left(V_{2}^{*}\right)^{2} \tag{93}
\end{equation*}
$$

For frictionless conditions the coefficients Y_{R} and Y_{S} would be zero and the theoretical total pressure rise in the stage would be $X \rho \omega^{2}{ }^{2}{ }^{2}{ }^{2}$ by Eq. 93. Hence the total-to-total stage efficiency becomes

$$
\begin{equation*}
n_{t}=1-\frac{Y_{R}\left(W_{1}^{*}\right)^{2}+Y_{S}\left(V_{2}^{*}\right)^{2}}{2 X} \tag{94}
\end{equation*}
$$

Equation 94 should actually be evaluated along particular stream surfaces; that is, $\mathrm{W}_{1}{ }^{*}$ and $\mathrm{V}_{2}{ }^{*}$ should be taken at the corresponding radii R_{1} and R_{2} of a stream surface. However, because of the small radial shift of the flow paths in the stage, and for the other reasons explained in paragraph 8, Eq. 94 will be determined for cylindrical stream surfaces and constant radii $R=R_{1}=R_{2}$. A volume flow averaged stage efficiency $\bar{\Pi}_{t}$ can be evaluated from the different efficiencies
n_{t} along the radius by

$$
\bar{n}_{t}=\frac{\int_{1 h}^{r_{1 t}} d_{1} \int_{1 t}^{r_{1 t}}}{r_{1 h}}
$$

With Eqs. 49 and 50 , with $r_{1 h}=R_{1 h} / R_{m}, r_{1 t}=R_{1 t} / R_{m}$,

$$
\bar{n}_{t}=\frac{\int_{1 h}^{r_{1 t}} r_{1} v_{a l}^{*} n_{t} d r_{1}}{Q_{1 \max }^{*}}
$$

where from Table $V, Q_{1}{ }^{*} \max =0.397007$. The average total pressure $\bar{P}_{t 3}$ at station 3 is then obtained from

$$
\begin{equation*}
\bar{\Pi}_{t 3}=\frac{\bar{P}_{t 3}-{ }_{P}{ }_{t 1}}{\rho \omega^{2} R_{m}^{2}}=\bar{\eta}_{t} x \tag{97}
\end{equation*}
$$

In addition to the changes of the total pressures $P_{t 2}$ and $P_{t 3}$ in radial direction, the distributions of the static pressures p_{1}, p_{2}, and p_{3} are of interest also for comparisons with the measured pressures and for the determination of the aerodynamic blade forces. From Eqs. 80 and 63

$$
\begin{equation*}
\pi_{1}=\frac{p_{1}-P_{t l}}{\rho \omega^{2} R_{m}^{2}}=-\frac{1}{2}\left(v_{1}^{*}\right)^{2} \tag{98}
\end{equation*}
$$

From Eqs. 81, 91, and 65

$$
\begin{equation*}
\Pi_{2}=\frac{p_{2}-P_{t 1}}{\rho \omega^{2} R_{m}^{2}}=X-\frac{Y_{R}}{2}\left(W_{1}^{*}\right)^{2}-\frac{1}{2}\left(V_{2}^{*}\right)^{2} \tag{99}
\end{equation*}
$$

From Eqs. 82, 93, and 63

$$
\begin{equation*}
\Pi_{3}=\frac{P_{3}-P_{t 1}}{\rho \omega^{2} R_{m}^{2}}=X-\frac{Y_{R}}{2}\left(W_{1}^{*}\right)^{2}-\frac{Y_{S}}{2}\left(V_{2}^{*}\right)^{2}-\frac{1}{2}\left(V_{1}^{*}\right)^{2} \tag{100}
\end{equation*}
$$

Table X shows the loss coefficients in rotor and stator for the solidities of Tables VIII and IX, and gives the dimensionless pressure coefficients. It can be noted that highest efficiency $\eta_{t}=0.9422$ occurs at the mean radius, whereas the efficiencies at the tip and the hub are 0.8238 and 0.8857 , respectively. The last line of Table X lists the integrands of Eq. 96. By trapezoidal integration the integral of Eq. 96 is 0.363035 , hence the average stage efficiency is

$$
n_{t}=\frac{0.363035}{0.397007}=0.9144
$$

Then, by Eq. 97, with $X=0.36578$

$$
\bar{n}_{t 3}=\frac{\bar{p}_{t 3}-P_{t 1}}{\rho \omega^{2} R_{m}^{2}}=0.33448
$$

Figure 15 is a plot of the pressure coefficients of Table X to show the pressure changes along the radius of the stage. It can be noted that equal increases of the static pressures in rotor and stator occur at a radius ratio $r=R / R_{m}$ of about 1.1 . At smaller radii most of the static pressure rise occurs in the stator, whereas the opposite occurs between $\mathrm{r}=1.1$ and the tip. Hence because of the resulting radial velocity distributions a symmetric blading does not have a constant degree of reaction of 50 percent.

With the established data the operating conditions of the compressor can be determined so that 135 HP are absorbed by one, two, or three stages. By Eqs. $30,31,40$, and 50 , the driving moment M for one stage is

$$
M=Q_{1 \text { max }} \rho_{0} \omega R_{m}^{2} X=2 \pi \omega^{2} R_{m}^{5} \rho_{0} Q_{1 \text { max }}^{*} X
$$

where $Q_{1 \max }^{*}=0.397007$ from Table V. Then, by Eq. 36, for 135 HP , $R_{m}=1.2 \mathrm{ft}$, and $\rho_{o}=2.371\left(10^{-3}\right) \mathrm{slug} / \mathrm{ft}^{3}$,

$$
\omega^{3}=\frac{(135)(550)}{2 \pi \rho_{0} R_{m}^{5} Q_{1}{ }^{*} \max x}=13.793\left(10^{6}\right)
$$

or

$$
\omega=239.82 \text { radians } / \mathrm{sec}
$$

and

$$
N=\frac{30}{\pi} \omega=2290 \mathrm{rpm}
$$

Then, by Eq. 50,

$$
Q_{1 \text { max }}=1034 \mathrm{ft}^{3} / \mathrm{sec}
$$

From Eq. 97 with $X=0.36578$ and $\bar{n}_{t}=0.9114$

$$
\bar{P}_{t 3}-P_{t 1}=\rho_{0} \omega^{2} R_{m}^{2} x \bar{n}_{t}=62.4 \mathrm{lb} / \mathrm{ft}^{2}=12.6 \mathrm{in} \cdot \mathrm{H}_{2} 0
$$

The following table gives these data if one, two, or three stages absorb a driving power of 135 HP .

$$
\begin{aligned}
& \text { One Stage Two Stages Three Stages } \\
& Z=1 \quad Z=2 \quad Z=3
\end{aligned}
$$

Speed N	(rpm)	2290	1818	1588
Volume Flow Rate $Q_{1 \text { max }}$	($\mathrm{ft} \mathrm{t}^{3} / \mathrm{sec}$)	1034	820	718
Pressure Rise $\mathrm{Z}\left(\bar{P}_{t} 3^{-P} \mathrm{P}_{1}\right)$	(in. $\mathrm{H}_{2} \mathrm{O}$)	12.6	15.9	18.1
Rotor Tip Speed $\omega \mathrm{R}_{t}$	(ft/sec)	359.7	285.5	249.4

Before deciding on a drive for all three speeds, a study will be undertaken to determine the blade and rotor stresses, and to investigate whether critical shaft speeds and bearing capacities permit trouble-free operation for all cases.

Marshal1, B. C.	"Effect of Blade Orientation on the Performance of an Axial Flow Compressor" Aeronautical Engineer's Thesis, Naval Postgraduate School, Sept. 1967
2. Vavra, M. H.	$\begin{aligned} & \text { Aerothermodynamics and Flow in Turbo- } \\ & \begin{array}{l} \text { Machines, Section } 16.5, \\ \text { pp.454/463, John Wiley \& Sons, N. Y. } \\ 1960 \end{array} \end{aligned}$
3. Steinke, R. J. Crouse, J. E.	NASA TN D03959, May 1967
4. Lieblein, S.	NACA RM E 57A28, 1957
5. Howe11, A. R.	"Development of the British Gas Turbine Jet Unit, Fluid Dynamics of Axial Compressors", ASME Reprint, p. 441, N. Y. 1947
6. Lieblein, S.	NASA SP-36, Chapter VI, 1965

1. Marshall, B. C.
2. Vavra, M. H.
3. Steinke, R. J. Crouse, J. E.
4. Lieblein, S.
5. Howell, A. R.
"Development of the British Gas Turbine Jet Unit, Fluid Dynamics of Axial Compressors", ASME Reprint, p. 441, N. Y. 1947

NASA SP-36, Chapter VI, 1965

FIG. 1 VELOCITY DIAGRAM OF SYMMETRICAL STAGE AT MEAN RADIUS R_{m} $W_{u 1 m}=V_{u 2 m} ; W_{u 2 m}=V_{u 1 m}$
$\Delta H_{u m}=\Delta V_{u m}$
$\alpha_{1 m}-\beta_{2 m} ; \alpha_{2 m}-\beta_{1 m}$

FIG. 2 VELOCITY DIAGRAM OF SYMMETRICAL STAGE FOR FLOW ON CYLINDRICAL STREAM SURFACE WITH $R_{2}=R_{1}$

$$
\begin{gathered}
W_{u 1}-V_{u 2} ; W_{u 2}=v_{u 1} \\
\Delta w_{u}=\Delta V_{u} \\
\alpha_{1} \neq \beta_{2} ; \alpha_{2}+\beta_{1}
\end{gathered}
$$

FIG. 3 VELOCITY DIAGRAM OF STAGE WITH FLOW ON ARBITRARY AXISYMETETRIC STREAM SURFACE

$$
\begin{aligned}
& \quad R_{2} \neq R_{1} \\
& \text { For } R_{2} V_{U 2}-R_{1} V_{U 1}=\text { Constant }-C \\
& \text { there iss } \\
& R_{1} W_{U 1}-R_{2} W_{U 2}-C=\omega\left(R_{1}^{2}-R_{2}^{2}\right)
\end{aligned}
$$

TIG. 4 THEORETICAL PRESSURE RISE $\triangle P_{5} / \Pi$ IM COMPRESSOR FOR PONTR OF 135 HP ginesigeal Matue MIS - - 1

FIG. 5 VOLUME FLOW RATE Q OF COMPRESSOR FOR POWER OF 135 HP SYMETR ICAL BLADING WITH $\sigma_{m}=1$

FOR ONE STAGE

FOR TWO STAGES

FOR THREE STAGES

FIG. 6 SPEED OF ROTATION N OF COMREESSOR FOR POLER OF 135 AP SMATERICAL BLNDING VITM © -1

FOR ONE STAGE

for three stages

FIG. 7 FLOW DEFlections in rotor cascade at different values OF FLOW INLET ANGLE $\beta_{1 m}$ AND NASA DIFPUSION FACTOR D_{m} at blade solidity $\sigma_{m}=1$

																						＋it						
			I．，	：＋															IIt：		\％	I				＋1		
	I		14		H			$1+1$			＋		ItI	\therefore		\cdots			I	1							－	
1.1	＋！1．		＋1：		＋\＃，		＋11．		İt	1	17＋		Fif	＋	1.	．		1t，	＋，	H！	＋	畆						
			＋							L＋t＋						F－1			！！1			H－I						
			！\dagger		1					$1+1$	17		14			扎		1	$\stackrel{\text { i }}{1}+$	＋		＋1：＋	＋	＋1！	1			
＋			\square		\square					＋	\％							75										
				＋	$+$	It				Fit			$1+1$	：	I	I＋			H11	＋！		11．11	去：	1－7		＋		
				\％						11					$11+$			＋1						－				
								＋1F｜		－	1				1．t													
E：				＋t	$1 \pm$	$\pm \pm$	＋	H1	，	＋	1		＋1ti		H			T	－ 71	IIT			IT	TII		\ldots		
																										L		
					F	19	N1			1	4		真	\％	2＊）	${ }^{1} 1$			IT	7		7． 5	10	VIA		4		＋+
	it		\cdots	\square			01		RSt	19	410	＋14	12	日厚	\％	T		＋		：7\％	＋	1：1．．	＋t	：$: 1$	11	\ldots		
																						1－1．			I			
\％	\square	12，	：								5		131．	W7	516					\pm	70		E－		\＃	I		
	± 1				H1．i．	（1）							＋18．									－	H	1．7	\rightarrow	1	$1+$	
						1R			114		E 8				End					10			\＃：	－	－	\square	it	
											Fi＋		＋										＋	IT＋7	．	＋：．1．	＋1	＋！
								4	H27	5	1							I						1！it	İI	$1+17$	＋	
																								［：1：	L－：	＋！	＋1＋：	
														E12												\％		
					H													－－	＋r＋	\ldots		$\cdots 1$	＋	$1+$		＋		
																							\square	T1		\pm	－	
F							i－1		$1+1$							1		11．	H	$1+:$		－-	＋1：	T1，	I		\square	－
I									\％		1	11			T				T	I				\pm	\pm			
			＋1：				1				＋1．7				－1／4	＋			＋1．			\square		！	I		T1	
						！	117	＋		17															$+$			
							\because	＋	． 1.				1												I	$1:$		
$=$					＋1＋1	7									＋			，										
							－																					
								T						＋1＋1	＋+1	＋					\＃			7				
＋		－	＋		\＃1	，							：tht								\ldots			2！				
								I！												513					－			
H								＋																				
																										1		
		16					71	－			E		\＃		5				1	\％				1				
							1																			－		
\pm						4					T			＋！														
\pm						＋	$1+$	．．．．	\ldots	＋	＋		I－r．	＋im	I					1				＋		，		
	＋14					＋	\square	\＃			F			1＋														
									7																	4		
4									7，1		1		\pm									－						
		rub 2	4																					－				
			$+$								＋																	
								－																				
\pm		（rit						（i1）																				
		\cdots																										
		Hen													＋													
		6Y																										
		H，				T：	7						1		I！				！！	\square				\＃！		\％		
																								＋		1		
1.1	＋1																											
\square		\＃										K																
			$5 \cdot$			H ${ }^{\text {a }}$					212												7		$\underline{0}$			
		9＋1	13．	（1，	＋1＋	－					，							＋	，	－	－			7				
		\ldots		H		\cdots				2	1\％																	
－						4						\pm				＋												
			＋							\square									11	（1）	＋1	\pm		TH				
		a．	＋		听							＋							$\underline{+}$	1		＋+		1				
		\％11		F！	\％	＋		0			＋	H1			H1					＋i，		！		＋				
＋	\cdots		H：					4		H	，if	17									4	It						
							7			7．7																		
\square							Cil				＋1，					1		，	＋1									
						＋	－																					
			2.				\＃																					
												\＃											\pm	4			1	
						＋														H		H					＋1	
				8											\square									H				
U1：								1.																				
		gra																										
												－		\％						n 1		1			1			
				15	－10	812			8			，								2 N								
													＋1－	－1						H：			＋					＋1
														5	＋1．t					\square								
													5	13														
												＋																

FIG. 14 DETERMINATION OF PROFILE COORDINATES

GIVEN: CHORD c; MAX. THICKNESS t; CAMBER ANGLE φ; STAGGER ANGLE γ $R_{c}=\frac{c}{2 \sin (\varphi / 2)} ; \quad \sin \theta=\frac{\frac{c}{2}-x}{R_{e}}=\left(1-\frac{2 x}{c}\right) \sin (\varphi / 2)=\left(1-\frac{2 \xi}{100}\right) \sin (\varphi / 2)$
$\frac{x}{c}=\frac{\xi}{100} \quad ; \frac{y}{c}=\frac{7}{100} \frac{t}{c}$
$\left.\begin{array}{l}x_{L} \\ x_{u}\end{array}\right\}=x \pm y \sin \theta=c \frac{\xi}{100} \pm c \frac{\eta}{100} \frac{t}{c}\left(1-\frac{2 \xi}{100}\right) \sin (\varphi / 2)$
$\left.\begin{array}{l}x_{2} / c \\ x_{u} / c\end{array}\right\}=\frac{\xi}{100} \pm \frac{\eta}{100} \frac{t}{d}\left(1-\frac{2 \xi}{100}\right) \sin (4 / 2)$
$\left.\begin{array}{l}y_{l} \\ \ddot{y}_{u}\end{array}\right\}=R_{c}[\cos \theta-\cos (\varphi / 2)] \mp y \cos \theta=\frac{c}{2 \sin (\varphi / 2)}[\cos \theta-\cos (\varphi / 2)] \mp \frac{\eta}{100} \frac{t}{c} c \cos \theta$
$\left.\begin{array}{l}y_{l / c} \\ y_{u} / c\end{array}\right\}=\cos \theta\left[\frac{1}{2 \sin (\varphi / 2)} \mp \frac{\eta}{100} \frac{t}{c}\right]-\frac{1}{2} \cot (\varphi / 2)$

FIG. 15 CALCULATED PRESSURE DISTRIBUTIONS IN STAGE (SEE TABLE X) P_{t} - Total Pressure, p. Static Pressure
$R^{t}=$ Radius, ω - Angular Velocity, p - Mass Density
Subscripts: (1) Ahead of Rotor
(2) After Rotor, Ahead of Stator
(3) After Stator
(m) Arithmetic Mewh Radius of Blading

TABLE I

three-dimensional flow conditions in compressor stage with velocity diagram of FIG. 2 do CYLINDRICAL STREAM SURFACES DATA AT MEAN RADIUS $R_{m}:$| $\beta_{1 m}=45^{\circ}$ | $D_{m}=0.40$ | $\sigma_{m}=1.0$ |
| :--- | :--- | :--- |
| $X=.35206(E q .4)$ | $Y=.45701(E q .11)$ | |

TABLE II
THREE-DIMENSIONAL FLOW CONDITIONS IN COMPRESSOR STAGE WITH VELOCITY DIAGRAM OF FIG. 2 ON CYLINDRICAL STREAM SURFACES

DATA AT MEAN RADIUS $R_{m}:$	$\beta_{1 m}=45^{\circ}$	$D_{m}=0.35$		$\sigma_{m}=1.0$
	$X=.28783\left(E_{q .4}\right)$	$Y=.41462\left(E_{q} .11\right)$		

Eq.	R / R_{m}	0.75	0.875	1.0	1.125	1. 25
$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & V_{a_{1}} /\left(\omega R_{m}\right) \\ & V_{a_{2}} /\left(\omega R_{m}\right) \end{aligned}$	$\begin{aligned} & .74200 \\ & .84627 \end{aligned}$	$\begin{aligned} & .70240 \\ & .75515 \end{aligned}$	$\begin{aligned} & .64391 \\ & .64391 \end{aligned}$	$\begin{aligned} & .5618 B \\ & .49790 \end{aligned}$	$\begin{aligned} & .44452 \\ & .26295 \end{aligned}$
$\begin{aligned} & 13 \\ & 14 \\ & 16 \\ & 15 \end{aligned}$	$\tan \beta_{1}$ $\tan \beta_{2}$ $\tan \alpha_{2}$ $\tan \alpha_{1}$	$\begin{aligned} & .7640 \\ & .21638 \\ & .66987 \\ & .24678 \end{aligned}$	$\begin{aligned} & .85703 \\ & .36155 \\ & .79716 \\ & .38870 \end{aligned}$	$\begin{aligned} & 1.0 \\ & .55300 \\ & 1.0 \\ & .55300 \end{aligned}$	$\begin{aligned} & 1.22878 \\ & .87282 \\ & 1.38667 \\ & .77343 \end{aligned}$	$\begin{aligned} & 1.66501 \\ & 1.93903 \\ & 2.81472 \\ & 1.14701 \end{aligned}$
	$\begin{aligned} & \beta_{1} \\ & \beta_{2} \\ & \alpha_{2} \\ & \alpha_{1} \end{aligned}$	$\begin{aligned} & 37^{\circ} 23^{\prime} \\ & 12^{\circ} 12^{\prime} \\ & 33^{\circ} 49^{\prime} \\ & 13^{\circ} 52^{\prime} \end{aligned}$	$\begin{aligned} & 40^{\circ} 36^{\prime} \\ & 19^{\circ} 53^{\prime} \\ & 38^{\circ} 34^{\prime} \\ & 21^{\circ} 15^{\prime} \end{aligned}$	$\begin{aligned} & 45^{\circ} \\ & 28^{\circ} 57^{\prime} \\ & 45^{\circ} \\ & 28^{\circ} 57^{\prime} \end{aligned}$	$\begin{aligned} & 50^{\circ} 51^{\prime} \\ & 41^{\circ} 07^{\prime} \\ & 54^{\circ} 12^{\prime} \\ & 37^{\circ} 43^{\prime} \end{aligned}$	$\begin{aligned} & 59^{\circ} 01^{\prime} \\ & 62^{\circ} 43^{\prime} \\ & 70^{\circ} 26^{\prime} \\ & 48^{\circ} 46^{\prime} \end{aligned}$
	$\begin{aligned} & \cos \beta_{1} \\ & \cos \beta_{2} \\ & \cos \alpha_{2} \\ & \cos \alpha_{1} \end{aligned}$	$\begin{aligned} & .79463 \\ & .97738 \\ & .83082 \\ & .97087 \end{aligned}$	$\begin{aligned} & .75930 \\ & .94042 \\ & .78 .195 \\ & .93206 \end{aligned}$	$\begin{aligned} & .70711 \\ & .87510 \\ & .70711 \\ & .87510 \end{aligned}$	$\begin{aligned} & .63121 \\ & .75339 \\ & .58492 \\ & .79101 \end{aligned}$	$\begin{aligned} & .51487 \\ & .45836 \\ & .33477 \\ & .65715 \end{aligned}$
21 22	$\begin{aligned} & D_{R} \\ & D_{S} \end{aligned}$	$\begin{aligned} & .22685 \\ & .39098 \end{aligned}$	$.28753$ $.36868$	$\begin{array}{r} .35 \\ .35 \end{array}$	$.41925$ $.33459$	$\begin{aligned} & .50222 \\ & .32203 \end{aligned}$
	$\begin{aligned} & W_{1} /\left(\omega R_{m}\right) \\ & W_{2} / W_{1} \\ & V_{2} /\left(\omega R_{m}\right) \\ & V_{1} / V_{2} \end{aligned}$	$\begin{aligned} & .93377 \\ & .92727 \\ & 1.01860 \\ & .75031 \end{aligned}$	$\begin{aligned} & .92506 \\ & .86804 \\ & .96573 \\ & .78034 \end{aligned}$	$\begin{aligned} & .91062 \\ & .80803 \\ & .91062 \\ & .80803 \end{aligned}$	$\begin{aligned} & .89016 \\ & .74242 \\ & .85123 \\ & .83448 \end{aligned}$	$\begin{aligned} & .86336 \\ & .66447 \\ & .78546 \\ & .86119 \end{aligned}$
	$\begin{aligned} & \Delta \beta=\beta_{1}-\beta_{2} \\ & \Delta \alpha=\alpha_{2}-\alpha_{1} \end{aligned}$	$\begin{aligned} & 25^{\circ} 11^{\prime} \\ & 19^{\circ} 57^{\prime} \end{aligned}$	$\begin{aligned} & 20^{\circ} 43^{\prime} \\ & 17^{\circ} 19^{\prime} \end{aligned}$	$\begin{aligned} & 16^{\circ} 03^{\prime} \\ & 16^{\circ} 03^{\prime} \end{aligned}$	$\begin{aligned} & 9^{\circ} 44^{\prime} \\ & 16^{\circ} 29^{\prime} \end{aligned}$	$\begin{aligned} & -3^{\circ} 42^{\prime} \\ & 21^{\circ} 40^{\prime} \end{aligned}$

TABLE III

THREE-DIMENSIONAL FLOW CONDITIONS IN COMPRESSOR STAGE WITH VELOCITY DIAGRAM OF IIG. 2 ON CYLINDRICAL STREAM SURFACES

DATA	T ME	RADIUS R_{m}	$\beta_{1 m}=40^{\circ}$		$D_{m}=0.40$		$\sigma_{m}=1.0$
			$X=.45911$ (Eq.4)			$Y=.75594(E q .11)$	
	Eq	R / R_{m}	0.75	0.875	1.0	1.125	1.25
	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & V_{a_{1}} /\left(\omega R_{m}\right) \\ & V_{a_{2}} /\left(\omega R_{m}\right) \end{aligned}$	$\begin{aligned} & .91793 \\ & 1.05203 \end{aligned}$.90101 $.96666$	$\begin{aligned} & .86944 \\ & .86944 \end{aligned}$	$\begin{aligned} & .82292 \\ & .75436 \end{aligned}$.75969 .61012
	$\begin{aligned} & 13 \\ & 14 \\ & 16 \\ & 15 \end{aligned}$	$\tan \beta_{1}$ $\tan \beta_{2}$ $\tan \alpha_{2}$ $\tan \alpha_{1}$	$\begin{aligned} & .74196 \\ & .06552 \\ & .64737 \\ & .87508 \end{aligned}$	$\begin{aligned} & .77674 \\ & .18119 \\ & .72399 \\ & .19439 \end{aligned}$	$\begin{aligned} & .83911 \\ & .31106 \end{aligned}$	$\begin{aligned} & .93150 \\ & .47517 \\ & 1.01616 \\ & .43558 \end{aligned}$	$\begin{aligned} & 1.06444 \\ & .72339 \\ & 1.32538 \\ & .58097 \end{aligned}$
		$\begin{aligned} & \beta_{1} \\ & \beta_{2} \\ & \alpha_{2} \\ & \alpha_{1} \end{aligned}$	$\begin{aligned} & 36^{\circ} 35^{\prime} \\ & 3^{\circ} 45^{\prime} \\ & 32^{\circ} 55^{\prime} \\ & 4^{\circ} 18^{\prime} \end{aligned}$	$\begin{aligned} & 37^{\circ} 50^{\prime} \\ & 10^{\circ} 16^{\prime} \\ & 35^{\circ} 54^{\prime} \\ & 11^{\circ} 0^{\prime} \end{aligned}$	$\begin{aligned} & 40^{\circ} \\ & 17^{\circ} 16^{\prime} \end{aligned}$	$\begin{aligned} & 42^{\circ} 58^{\prime} \\ & 25^{\circ} 25^{\prime} \\ & 45^{\circ} 28^{\prime} \\ & 23^{\circ} 32^{\prime} \end{aligned}$	$\begin{aligned} & 46^{\circ} 47^{\prime} \\ & 35^{\circ} 53^{\prime} \\ & 52^{\circ} 58^{\prime} \\ & 30^{\circ} 09^{\prime} \end{aligned}$
		$\begin{aligned} & \cos \beta_{1} \\ & \cos \beta_{2} \\ & \cos \alpha_{2} \\ & \cos \alpha_{1} \end{aligned}$.80300 .99785. .83945. .99719	$\begin{aligned} & .78975 \\ & .98398 \\ & .81000 \\ & .98165 \end{aligned}$	$\begin{aligned} & .76604 \\ & .95487 \end{aligned}$	$\begin{aligned} & .73172 \\ & .90322 \\ & .70142 \\ & .91680 \end{aligned}$	$\begin{aligned} & .68470 \\ & .81023 \\ & .60230 \\ & .86467 \end{aligned}$
	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & D_{R} \\ & D_{S} \end{aligned}$	$\begin{aligned} & .27845 \\ & .44866 \end{aligned}$	$\begin{aligned} & .34012 \\ & .42325 \end{aligned}$	$\begin{array}{r} .4 \\ .4 \end{array}$	$\begin{aligned} & .46148 \\ & .37884 \end{aligned}$	$\begin{aligned} & .52821 \\ & .35928 \end{aligned}$
		$\begin{aligned} & W_{1} /\left(\omega R_{m}\right) \\ & W_{2} / W_{1} \\ & V_{2} /\left(\omega R_{m}\right) \\ & V_{1} / V_{2} \end{aligned}$	$\begin{aligned} & 1.14301 \\ & .92238 \\ & 1.25324 \\ & .73451 \end{aligned}$	1.14088 .86109 1.19341 $.76910$	$\begin{aligned} & 1.13498 \\ & .80224 \\ & 1.13498 \\ & .80224 \end{aligned}$	$\begin{aligned} & 1.12464 \\ & .74263 \\ & 1.07547 \\ & .83461 \end{aligned}$	$\begin{aligned} & 1.10952 \\ & .67869 \\ & 1.01298 \\ & .86733 \end{aligned}$
		$\begin{aligned} & \Delta \beta=\beta_{1}-\beta_{2} \\ & \Delta \alpha=\alpha_{2}-\alpha_{1} \end{aligned}$	$\begin{aligned} & 32^{\circ} 50^{\prime} \\ & 28^{\circ} 37^{\prime} \end{aligned}$	$\begin{aligned} & 27^{\circ} 34^{\prime} \\ & 24^{\circ} 54^{\prime} \end{aligned}$	$\begin{aligned} & 22^{\circ} 44^{\prime} \\ & 22^{\circ} 44^{\prime} \end{aligned}$	$\begin{aligned} & 17^{\circ} 39^{\prime} \\ & 21^{\circ} 56^{\prime} \end{aligned}$	$\begin{aligned} & 10^{\circ} 54^{\prime} \\ & 12^{\circ} 49^{\prime} \end{aligned}$

TABLE IV
THREE-DIMENSIONAL FLOW CONDITIONS IN COMPRESSOR STAGE WITH VELOCITY DIAGRAM OF FIG. 2 UN CYLINDRICAL STREAM SURFACES

DȦTA AT MEAN RADIUS R_{m} :

$\beta_{1 m}=40^{\circ}$	$D_{m}=0.35$	
$\sigma_{m}=1.0$		
$X=.36578(E q .4)$	$Y=.66233(E q .11)$	

Eq.	R / R_{m}	0.75	0.875	1.0	1.125	1. 25
$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & V_{a_{1}}-/\left(\omega R_{m}\right) \\ & V_{a_{2}} /\left(\omega R_{m}\right) \end{aligned}$	$\begin{aligned} & 88082 \\ & .99313 \end{aligned}$.85479 91014	$\begin{aligned} & .81383 \\ & .81383 \end{aligned}$	$\begin{aligned} & .75670 \\ & .69745 \end{aligned}$	$\begin{aligned} & .68022 \\ & .54722 \end{aligned}$
$\begin{aligned} & 13 \\ & 14 \\ & 16 \\ & 15 \end{aligned}$	$\tan \beta_{1}$ $\tan \beta_{2}$ $\tan \alpha_{2}$ $\tan \alpha_{1}$	$\begin{aligned} & .70259 \\ & .13205 \\ & .62312 \\ & .14889 \end{aligned}$	$\begin{array}{r} .75635 \\ .25103 \\ .71033 \\ .23575 \end{array}$	$\begin{aligned} & .83911 \\ & .38965 \\ & .83910 \\ & .38965 \end{aligned}$	$\begin{aligned} & .95820 \\ & .57341 \\ & 1.03957 \\ & .52850 \end{aligned}$	$\begin{aligned} & 1.13391 \\ & .87476 \\ & 1.40948 \\ & .70372 \end{aligned}$
	$\begin{aligned} & \beta_{1} \\ & \beta_{2} \\ & \alpha_{2} \\ & \alpha_{1} \end{aligned}$	$\begin{gathered} 35^{\circ} 05^{\prime} \\ 7^{\circ} 31^{\prime} \\ 31^{\circ} \\ 56^{\prime} \\ 8^{\circ} \end{gathered} 28^{\prime}=$	$\begin{aligned} & 37^{\circ} 06^{\prime} \\ & 14^{\circ} 06^{\prime} \\ & 35^{\circ} 23^{\prime} \\ & 13^{\circ} 16^{\prime} \end{aligned}$	$\begin{aligned} & 40^{\circ} \\ & 21^{\circ} \quad 17^{\prime} \end{aligned}$	$\begin{aligned} & 43^{\circ} 46^{\prime} \\ & 29^{\circ} 50^{\prime} \\ & 46^{\circ} 07^{\prime} \\ & 27^{\circ} 51^{\prime} \end{aligned}$	$\begin{aligned} & 48^{\circ} 35^{\prime} \\ & 41^{\circ} 11 \\ & 54^{\circ} 39^{\prime} \\ & 35^{\circ} 08^{\prime} \end{aligned}$
	$\begin{aligned} & \cos \beta_{1} \\ & \cos \beta_{2} \\ & \cos \cdot \alpha_{2} \\ & \cos \alpha_{1} \end{aligned}$	$\begin{aligned} & .81824 \\ & .99139 \\ & .84871 \\ & .98910 \end{aligned}$	$\begin{aligned} & .79756 \\ & .96990 \\ & .81525 \\ & .97331 \end{aligned}$	$\begin{aligned} & .76604 \\ & .93176 \end{aligned}$	$\begin{aligned} & .72204 \\ & .86750 \\ & .69325 \\ & .88412 \end{aligned}$	$\begin{aligned} & .66143 \\ & .75266 \\ & .57863 \\ & .81780 \end{aligned}$
21 22	$\begin{aligned} & D_{R} \\ & D_{S} \end{aligned}$	$\begin{aligned} & .23932 \\ & .39528 \end{aligned}$	$\begin{aligned} & .29511 \\ & .37717 \end{aligned}$	$\begin{array}{r} .35 \\ .35 \end{array}$	$\begin{aligned} & 40738 \\ & .33105 \end{aligned}$	$\begin{aligned} & .47087 \\ & .31387 \end{aligned}$
	$\begin{aligned} & W_{1} /\left(\omega R_{m}\right) \\ & W_{2} / W_{1} \\ & V_{2} /\left(\omega R_{m}\right) \\ & V_{1} / V_{2} \end{aligned}$	$\begin{aligned} & 1.07649 \\ & .93056 \\ & 1.17016 \\ & .76101 \end{aligned}$	$\begin{aligned} & 1.07175 \\ & .87552 \\ & 1.11639 \\ & .78665 \end{aligned}$	$\begin{aligned} & 1.06238 \\ & .82214 \\ & 1.06238 \\ & .82214 \end{aligned}$	$\begin{aligned} & 1.04801 \\ & .76712 \\ & 1.00605 \\ & .85072 \end{aligned}$	$\begin{aligned} & 1.02841 \\ & .70695 \\ & .94571 \\ & .87950 \end{aligned}$
	$\begin{aligned} & \Delta \beta=\beta_{1}-\beta_{2} \\ & \Delta \alpha=\alpha_{2}-\alpha_{1} \end{aligned}$	$\begin{aligned} & 27^{\circ} 34^{\prime} \\ & 23^{\circ} 28^{\prime} \end{aligned}$	$\begin{aligned} & 23^{\circ} \\ & 22^{\circ} 07^{\prime} \end{aligned}$	$\begin{aligned} & 18^{\circ} 43^{\prime} \\ & .18^{\circ} 43^{\prime} \end{aligned}$	$\begin{aligned} & 13^{\circ} 56^{\prime} \\ & 18^{\circ} 16^{\prime} \end{aligned}$	$\begin{aligned} & 7^{\circ} 24^{\prime} \\ & 19^{\circ} 31^{\circ} \end{aligned}$

TABLE I FLOW RATE CALCULATIONS FROM FIRST APPROXIMATION

EQ	$r_{1}=R_{1} / R_{m}, r_{2}=R_{2} / R_{m}$. 0.75	0.8125	0.875	0.9375	1.0	1.0625	1.125	1.1875	1.25
10	$V_{a_{1}}^{*}=V_{a_{1}} /\left(\omega R_{m}\right)$. 88082	. 86965	. 85479	. 83622	.81383	. 78743	. 75670	. 72119	. 68022
12	$V_{a_{2}}{ }^{*}=V_{a_{2}} /\left(\omega R_{m}\right)$.99313	.95300	. 91014	. 86399	. 81383	.75875	. 69745	.62801	. 54722
49	$\begin{aligned} & Q_{1}^{*} \\ & Q_{1}^{*} \\ & Q_{1}^{*} / Q_{\text {max }_{\text {max }}^{*}}^{*}=Q_{1} / Q_{\text {Imax }} \end{aligned}$	\bigcirc	.042725	. 088179	.136051	. 185982	. 237559	. 290307	. 343673	.397007
									-	. 397007
		0	.107618	. 222109	.342692	.468460	.598375	.731239	.865660	1
52	$\begin{aligned} & Q_{2}^{*} \\ & Q_{2}^{*} \\ & Q_{2}^{*} / Q_{2 \text { max }}^{*}=Q_{2} / Q_{\text {2max }} \end{aligned}$	0	. 047474	. 096558	.146757	.197501	. 248126	. 297839	. 345664	. 390345
										.390345
		0	.121621	247366	. 375967	.505965	. 635658	. 763015	. 885535	1

$E Q$.	$r_{2}=R_{2} / R_{m}$	0.75	C 8125	0.875	C. 9375	1	$1.062=$	1.125	1.1875	1.25
$\begin{aligned} & 55 \\ & 46 \\ & 47 \end{aligned}$	$\int_{1}^{r_{2}} \frac{r_{1}}{f\left(r_{2}\right) d r_{2}} \underset{\left.r_{2}\right)}{r\left(r_{2}\right.}$	$\begin{gathered} .75 \\ 1.129 \\ 1.39736 \\ -.35669 \end{gathered}$	$\begin{array}{r} .8198 \\ 1.102 \\ 1.42030 \\ -.26859 \end{array}$	$\begin{gathered} .8879 \\ 1.072 \\ 1.43482 \\ -.17926 \end{gathered}$	$\begin{gathered} .9535 \\ 1.036 \\ 1.43293 \\ -.08964 \end{gathered}$	$\begin{gathered} 1.0 .1-73 \\ 1.008 \\ 1.43629 \end{gathered}$ 0	$\begin{gathered} 1.0794 \\ .980 \\ 1.43447 \\ .08972 \end{gathered}$	$\begin{gathered} 1.1399 \\ 0.552 \\ 1.42774 \\ .17923 \end{gathered}$	$\begin{aligned} & 1.1979 \\ & .900 \\ & 1.37672 \\ & .26726 \end{aligned}$	$\begin{gathered} 1.25 \\ .755 \\ 1.16467 \\ .35194 \end{gathered}$
$\begin{aligned} & 47 \\ & 52 \end{aligned}$	$l \begin{aligned} & V_{m 2}^{*}=0.844 \\ & Q^{*}\end{aligned}$	1.03404	. 99042	94424	.89553	0.844	.78906	.73014	.66714	$\begin{aligned} & .60033 \\ & .408091 \\ & \hline \end{aligned}$
$\begin{aligned} & 47 \\ & 52 \end{aligned}$	$\underline{\underline{V_{m 2}^{*}}=0.8382}$	1.02921	.98548	.93906	89006	0.8382	.78285	.72343	.65978	$\begin{aligned} & .59215 \\ & .405012 \end{aligned}$
47 52	$\begin{array}{rr} V_{m 2}^{*}=0.838 \\ & Q_{d_{2}}^{*} \\ & Q_{2} / Q_{2 \max } \end{array}$	1.02904	$\begin{aligned} & .98531 \\ & .049136 \\ & .121350 \end{aligned}$	$\begin{array}{r} .93888 \\ .099826 \\ .246542 \end{array}$	$\begin{aligned} & .88988 \\ & .151569 \\ & .37+332 \end{aligned}$	$\frac{0.838}{.203827}$	$\begin{aligned} & .78264 \\ & .256001 \\ & .63225 \end{aligned}$	$\begin{aligned} & .72320 \\ & .307412 \\ & .75922 \end{aligned}$	$\begin{aligned} & .65953 \\ & .357312 \\ & .88246 \end{aligned}$	$\begin{array}{r} .59187 \\ \frac{.404907}{1} \\ \hline \end{array}$
47 52	$V_{m 2}^{*}=0.837$ $Q_{22}^{* *}$	1.02823	.98446	93799	.88893	$\underline{0.837}$.78157	72204	65826	$\begin{aligned} & .59045 \\ & \hdashline 404375 \\ & \hline \end{aligned}$

$\begin{gathered} 119 t 1 \\ 9 Z \varepsilon \varepsilon . \\ \varepsilon s ร s 8 . \end{gathered}$		$\begin{aligned} & \varepsilon \nleftarrow O S 1 \\ & 8 \angle S \varepsilon . \\ & \succ 1 \angle z 8 . \end{aligned}$	$\begin{gathered} 0 \text { OLSE1 } \\ 899 \varepsilon \\ 09 \varepsilon 18 \end{gathered}$	$\begin{aligned} & 8809.1 \\ & \angle S \angle E \\ & 9 \angle 66 L . \end{aligned}$	$\begin{aligned} & 61+9.1 \\ & \triangleright+8 \varepsilon . \\ & +958 L^{\prime} \end{aligned}$	$\begin{aligned} & 6 \triangleright \angle 9 \cdot 1 \\ & \tau \varepsilon \sigma \varepsilon \\ & \angle S \\| L L^{\prime} \end{aligned}$	$\begin{gathered} 80 \mathrm{~L} \cdot 1 \\ 810 \mathrm{t} \\ \mathrm{E} \mathrm{595L} \end{gathered}$	$\begin{aligned} & 91 \triangleright L \cdot 1 \\ & \text { La1b. } \\ & \text { ZOItL. } \end{aligned}$	${ }^{\circ}(5 \theta \exists ⿻)$		$\begin{aligned} & 69 \\ & 81 \end{aligned}$	－
SOZLI $9 \angle \varepsilon \triangleright$ $16,0 t L$	$\begin{aligned} & 2169.1 \\ & s \not t z b \\ & 06 \triangleright L s L . \end{aligned}$	$\begin{aligned} & 1 \varepsilon \not \subset 9^{\prime} \\ & 800 \downarrow \\ & \leftarrow \varepsilon L 18 L \end{aligned}$	$\begin{aligned} & 968 \mathrm{~S} 1 \\ & 82 L \varepsilon \\ & S 96808 \end{aligned}$	$\begin{aligned} & z \varsigma \varepsilon \varsigma \varsigma^{\prime} \\ & 9 z わ \varepsilon . \\ & 80 \angle L \varepsilon 8 . \end{aligned}$	$\begin{gathered} 118 \forall 1 \\ \operatorname{Lo1\varepsilon } \\ \text { zL9L98. } \end{gathered}$		$\begin{aligned} & 6 \triangleright L \varepsilon \cdot 1 \\ & 61 b Z^{\prime} \\ & 8101 \varepsilon 6 . \end{aligned}$	$\begin{array}{r} \triangleright 82 \varepsilon 1 \\ 2902 \\ 959896 \end{array}$	$\begin{gathered} \left.\operatorname{cog}_{a}\right)_{\left(y_{a}\right)} \\ M_{M} / r_{M} \end{gathered}$		$\begin{array}{r} 89 \\ 41 \end{array}$	0 0 0 0 0
ち29762	12ヵ81E	9ع10 ヤE＊	86て19E．	－ 2 乙 \＆\＆	zoع90t	6てO1\＆゙	EVSLSt	LOLL8 ${ }^{\circ}$	${ }^{10} \Lambda^{-2 n} \Lambda={ }_{*}^{n} M \nabla={ }^{n} A \nabla$			
$81219 L^{\circ}$	8£698 ${ }^{\prime}$	とのて	SE	996688°	s6\＆	と6てを96＇	sts 000．1	$\varepsilon 9 \varepsilon \angle \varepsilon \bigcirc \cdot 1$			99	
1عで26	$816+00.1$	scl \downarrow ¢0．1	1 1EE90＇	L11260＇1	＇ع6611＇	L9をLb1．1		を6L00\％＇1			59	
－¢SLLL＇	960888°	SヶLて88．	S62916	809176．	ع85096	859 ¢ 16	を6Lヤ86	926166°	os			$\xrightarrow{-1}$
SLLEO9 ${ }^{\circ}$	208959	606869°	osLsel＇	LIELQL	s8sャ6 L°	$162818{ }^{\circ}$	と¢16を8	$\angle 96958^{\circ}$	502			0
CLL808＇	906059°	とのてとをS＊	O60んを尔	$06 \leq L s \varepsilon$	－+68 て	915672.	を1ヤ9L1．	9十t $\angle 21^{\circ}$	funt		29	
3LEOE＇	6196611	をてを ¢ $2 \cdot 1$	s6ط026	LrLsE8	といゅらし	9ャャてロし	－028b9	68\＆ 109°	2×407		9	\bigcirc
8898L ${ }^{\circ}$	26て6で。		ゅ80てもを	099662	$1 \varepsilon g<6 \%$	88	こと8 ELI＊	Lヤ1181＊			09	0
でEILし	8028sL	L900ヤ ${ }^{\circ}$	910で	－＞¢00L	696629	215659	こL98\＆9	¢58819＊			st	I
$\angle 8165^{\circ}$	ع56s9	\bigcirc	ャ9て8L．	$8 \varepsilon 8$	88688	888	185	0620.1		II		\＄
52%	6L61．1	bb\＆11	†b $\mathrm{LO}^{\text {O }}$	عL10．1	SES6	6188	8618	56°		区		\％
Sで1	SL81．1	Sて1．1	5690.1	0.1	$\leq L \varepsilon \varepsilon \cdot 0$	SL8．0	S218．0	$54 \cdot 0$	$m_{y /} z_{y}=z_{1}$	$378{ }^{1}$	ba	
LOヤ820．1	$918880^{\prime \prime}$	L008 ${ }^{1} 1$	LE8	を8E 2901	$629 L 90 \cdot 1$		L59＋ 10.1	18ャ 92				
OLL 188．	－89＋78＊	s88 558＇	sst S98	bても 18	298618	$008+88$	81ع 888＊	0¢ร 0b8			$\varepsilon 9$	$\xrightarrow{0}$
－\＆${ }^{\text {¢ }} 199$	と0とヤ69	Lعロひてし＇	L8Ls $\square^{\text {c }}$	とヤ09のL	をاてを8L－	$\rightarrow 9$ L6 L°	¢£2608．	9をて818	son			－
－0 \＆L 4	£08\＆ร8	$\downarrow 11 \rightarrow 88$	s $\dagger 8606$	ャ9L1をb		$\varepsilon 8099 \mathrm{~b}$	886846	L6068b				
Sibecı•1	St89E0．1	8b1896．	て97 £b8．	901 b¢8	$b+8 \varepsilon b L^{\circ}$	9†を 9¢L	926 sとL．	885 201	，		69	H
şl EOL	beLbog．	－てS 879	ャ90	159 b8E	L9\％Lとを	L6て L9で $^{\circ}$	30\＆80で	268871	7		85	「
で\＆1LL．	ع9L LطL＇	690 stl	乙८\＆عOL	068289°	とદ8¢99	415949＊	¢ャ¢1を9	ع58819 ${ }^{\circ}$			LS	$\stackrel{m}{-1}$
8898 Lt	LeLbをt．	$1 \varepsilon 6$ b ${ }^{\text {c }}$	$8 \\|$ bse	OいL1を．	L99をLて．	を8t 876	SS1181	1 1碞			95	
22089	6いてし。	OL9SL＊	$\varepsilon ゅ L 8 L^{\circ}$	ع\＆と18＊	とて9と8	6LヤS8．	59698°	28088＊	$\left.\left({ }^{m} y m\right)\right)^{10} \Lambda={ }^{10} \wedge$	I		
Sで1	SL81＇1	Sと101	52901	0.1	SLE6．O	SLB ${ }^{\circ}$	S218．0	SL．O	$m^{\prime \prime} / /^{\prime} y=1^{\prime}$	77871	$6 \exists$	

EQ.	TABCE		$\text { F. } 6$	$r=R / R_{m}$	0.75	0.8125	0.875	0.9375	1.0	1.0625	1.125	1.1875	1.25
				$R \text { (in.) }$ ASSUMED CHORD C_{R} (in.) SOLIDITY σ_{R}	$\begin{array}{r} 10.8 \\ 2.4 \\ 1.061 \end{array}$	$\begin{aligned} & 11.7 \\ & 2.5 \\ & 1.020 \end{aligned}$	$\begin{aligned} & 12.6 \\ & 2.6 \\ & .985 \end{aligned}$	$\begin{gathered} 13.5 \\ 2.7 \\ .955 \\ \hline \end{gathered}$	$\begin{aligned} & 14.4 \\ & 2.8 \\ & .928 \end{aligned}$	$\begin{gathered} 15.3 \\ 2.9 \\ .905 \end{gathered}$	$\begin{aligned} & 16.2 \\ & 3.0 \\ & .884 \end{aligned}$	$\begin{aligned} & 17.1 \\ & 3.1 \\ & .865 \end{aligned}$	$\begin{gathered} 18.0 \\ 3.2 \\ .849 \end{gathered}$
$\begin{aligned} & 17 \\ & 68 \end{aligned}$				$D_{R} \quad D_{E Q R}$	$\begin{aligned} & .2498 \\ & 1.3662 \end{aligned}$	$\begin{aligned} & .2777 \\ & 1.4105 \end{aligned}$	$\begin{aligned} & .3053 \\ & 1.4567 \end{aligned}$	$\begin{aligned} & 3316 \\ & 1.5034 \end{aligned}$	$\begin{aligned} & .3566 \\ & 1.5506 \\ & \hline \end{aligned}$	$\begin{array}{r} .3801 \\ 1.5978 \\ \hline \end{array}$	$\begin{aligned} & .4018 \\ & 1.6442 \end{aligned}$	$\begin{aligned} & .4197 \\ & 1.6855 \end{aligned}$	$\begin{aligned} & .4274 \\ & 1.7085 \end{aligned}$
				ASSUMED MAX. THICK. (in. $t / C_{R}=$ THICKN. $C H O R D$	$\begin{aligned} & .30 \\ & .125 \end{aligned}$.276 . 1104	$\begin{aligned} & .256 \\ & .0985 \\ & \hline \end{aligned}$	$\begin{aligned} & .239 \\ & .085 \end{aligned}$	$\begin{aligned} & .225 \\ & .0764 \end{aligned}$	$\begin{gathered} .214 \\ .0738 \\ \hline \end{gathered}$	$\begin{gathered} .206 \\ .0687 \end{gathered}$	$\begin{aligned} & .201 \\ & .0648 \end{aligned}$	$\begin{aligned} & .20 \\ & .0625 \end{aligned}$
	$\begin{aligned} & \text { VII } \\ & \text { VII } \end{aligned}$			$\begin{array}{ll} \beta_{1} & (0) \\ \beta_{2} \\ \Delta \beta=\beta_{1}-\beta_{2} & (0) \end{array}$	$\begin{array}{r} 35.09 \\ 7.26 \\ 27.83 \end{array}$	$\begin{aligned} & 35.99 \\ & 10.0 \\ & 25.99 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.47 \\ & 12.93 \\ & 24.54 \end{aligned}$	$\begin{aligned} & 38.44 \\ & 16.14 \\ & 22.30 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 19.68 \\ & 20.32 \end{aligned}$	$\begin{aligned} & 41.77 \\ & 23.61 \\ & 18.16 \end{aligned}$	$\begin{gathered} 43.78 \\ 28.02 \\ 15.76 \end{gathered}$	$\begin{aligned} & 46.04 \\ & 33.06 \\ & 12.98 \end{aligned}$	$\begin{array}{r} 48.59 \\ 38.96 \\ 9.63 \\ \hline \end{array}$
		$\begin{aligned} & 137 \\ & 142 \\ & 161 \\ & 172 \\ & 168 \\ & 138 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 195 \\ 199 \\ 212 \\ 219 \\ 217 \\ 196 \\ \hline \end{array}$	$\begin{aligned} & \left(K_{i}\right)_{t} \\ & \left(K_{\delta}\right)_{t} \\ & m \\ & n \end{aligned}$	$\begin{gathered} 3.00 \\ 1.10 \\ .73 \\ 1.40 \\ .263 \\ -.11 \\ \hline \end{gathered}$	$\begin{aligned} & 2.95 \\ & 1.045 \\ & .73 \\ & 1.145 \\ & .272 \\ & -.117 \end{aligned}$	$\begin{gathered} 2.90 \\ .995 \\ .77 \\ .975 \\ .281 \\ -.126 \end{gathered}$	$\begin{aligned} & 2.90 \\ & .930 \\ & .79 \\ & .80 \\ & .29 \\ & -.135 \end{aligned}$	$\begin{gathered} 2.95 \\ .890 \\ .82 \\ .70 \\ .30 \\ -.145 \end{gathered}$	$\begin{aligned} & 3.00 \\ & .865 \\ & .84 \\ & .67 \\ & .308 \\ & -.155 \end{aligned}$	$\begin{gathered} 3.05 \\ .832 \\ .91 \\ .615 \\ .318 \\ -.166 \end{gathered}$	$\begin{aligned} & 3.10 \\ & .810 \\ & .97 \\ & .575 \\ & .328 \\ & -.180 \end{aligned}$	$\begin{aligned} & 3.20 \\ & .790 \\ & 1.06 \\ & .55 \\ & .335 \\ & -.197 \end{aligned}$
71				$i_{0} \delta_{0}(0)$	$\begin{aligned} & 3.63 \\ & 1.12 \end{aligned}$	$\begin{array}{r} 3.39 \\ .92 \\ \hline \end{array}$	$\begin{aligned} & 3.17 \\ & .82 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.97 \\ & .69 \end{aligned}$	$\begin{aligned} & 2.89 \\ & .63 \end{aligned}$	$\begin{aligned} & 2.85 \\ & .62 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.79 \\ & .62 \end{aligned}$	$\begin{aligned} & 2.76 \\ & .61 \end{aligned}$	$\begin{aligned} & 2.78 \\ & .64 \end{aligned}$
70 70				$\begin{aligned} & \varphi \\ & \varphi(0,1) \end{aligned}$	$\begin{aligned} & 40.383 \\ & 40^{\circ} 23^{\prime} \end{aligned}$	$\begin{gathered} 38.494 \\ 38^{\circ} 30^{\circ} \end{gathered}$	$\begin{gathered} 37.4198 \\ 37^{\circ} 25^{\prime} \end{gathered}$	$\begin{aligned} & 34.817 \\ & 34^{\circ} 49^{\prime} \end{aligned}$	$\begin{aligned} & 32.540 \\ & 32^{\circ} 32^{\prime} \end{aligned}$	$\begin{aligned} & 29.665 \\ & 29^{\circ} 40^{\prime} \end{aligned}$	$\begin{aligned} & 26.337 \\ & 26^{\circ} 20^{\prime} \end{aligned}$	$\begin{aligned} & 22.012 \\ & 22^{\circ} 01^{\prime} \end{aligned}$	$\begin{aligned} & 16.004 \\ & 16^{\circ} 0^{\prime} \end{aligned}$
13 74				$\begin{array}{ll} i & (0) \\ \delta & (0) \\ \hline \end{array}$	$\begin{array}{r} -.812 \\ 11.74 \end{array}$	$\begin{array}{r} -1.114 \\ 11.39 \end{array}$	$\begin{array}{r} -1.545 \\ 11.33 \end{array}$	$\begin{array}{r} -1.730 \\ 10.79 \end{array}$	$\begin{array}{r} -1.828 \\ 10.39 \end{array}$	$\begin{gathered} -1.748 \\ 9.76 \end{gathered}$	$\begin{gathered} -1.582 \\ 8.99 \end{gathered}$	$\begin{array}{r} -1.202 \\ 7.83 \end{array}$	$\begin{gathered} -.373 \\ 6.0 \end{gathered}$
75 75				$\begin{array}{lr} \gamma & (0) \\ \gamma & (0,1) \\ \hline \end{array}$	$\begin{aligned} & 15.711 \\ & 15^{\circ} 43^{\circ} \end{aligned}$	$\begin{gathered} 17.857 \\ 17051^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} & 20.305 \\ & 20^{\circ} 18^{\prime} \end{aligned}$	$\begin{gathered} 22.761 \\ 22^{\circ} 46^{\prime} \end{gathered}$	$\begin{aligned} & 25.558 \\ & 25^{\circ} 33^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 28.686 \\ & 28^{\circ} 41^{\prime} \end{aligned}$	$\begin{aligned} & 32.103 \\ & 32^{\circ} 12^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 36.236 \\ & 36^{\circ} 14^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 40.96 \\ & 40^{\circ} 58 \end{aligned}$
				$l_{a \times R}=c_{R} \cos \gamma$ (in.)	2.310	2.380	2.438	2.490	2.526	2.544	2.538	2.500	2.416

EQ.	TABE			$r=R / R_{m}$	0.75	0.8125	0.875	0.9375	1.0	1.0625	1.125	1.1875	1.25
				ASSUMED CHORD c_{s} (in.) SOLIDITY σ_{g}	$\begin{gathered} 10.8 \\ 2.60 \\ 1.226 \end{gathered}$	$\begin{aligned} & 11.7 \\ & 2.55 \\ & 1.110 \end{aligned}$	$\begin{aligned} & 12.6 \\ & 2.50 \\ & 1.010 \end{aligned}$	$\begin{array}{r} 13.5 \\ 2.45 \\ .924 \end{array}$	$\begin{aligned} & 14.4 \\ & 2.40 \\ & .849 \\ & \hline \end{aligned}$	15.3 2.35 782	$\begin{aligned} & 16.2 \\ & 2.30 \\ & .723 \end{aligned}$	$\begin{aligned} & 17.1 \\ & 2.25 \\ & .670 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 2.20 \\ & .622 \end{aligned}$
$\begin{aligned} & 18 \\ & 69 \end{aligned}$				D_{S} Dess	$\begin{aligned} & .4240 \\ & 1.7612 \end{aligned}$	$\begin{aligned} & .4190 \\ & 1.7328 \\ & \hline \end{aligned}$	$\begin{aligned} & .4147 \\ & 1.7049 \end{aligned}$	$\begin{aligned} & .4106 \\ & 1.6752 \end{aligned}$	$\begin{aligned} & .4073 \\ & 1.6459 \end{aligned}$	$\begin{aligned} & .4035 \\ & 1.5774 \end{aligned}$	$\begin{aligned} & .4001 \\ & 1.5772 \end{aligned}$	$\begin{aligned} & .3959 \\ & 1.5477 \end{aligned}$	$\begin{aligned} & .3762 \\ & 1.5044 \end{aligned}$
				ASSUMED MAX. THICKNESS (in. $t / C_{s}=\text { THICKN. } / C H O R D$	$\begin{array}{r} .170 \\ .065 \\ \hline \end{array}$	$\begin{array}{r} .180 \\ .070 \\ \hline \end{array}$	$\begin{aligned} & .190 \\ & .076 \\ & \hline \end{aligned}$	$\begin{array}{r} .200 \\ .082 \\ \hline \end{array}$	$\begin{aligned} & .210 \\ & .087 \\ & \hline \end{aligned}$	$\begin{array}{r} .220 \\ .094 \\ \hline \end{array}$	$\begin{array}{r} 230 \\ .100 \\ \hline \end{array}$	$\begin{aligned} & .240 \\ & .107 \end{aligned}$	$\begin{array}{r} .250 \\ .114 \end{array}$
	VIII			α_{2} (0) α_{1} (0) $\Delta \alpha_{2}=\alpha_{2-} \alpha_{1}$ (0)	31.039 8.468 22.571	$\begin{aligned} & 32.968 \\ & 11.767 \\ & 21.201 \end{aligned}$	35.086 14.965 20.121		$\begin{aligned} & 39.886 \\ & 21.288 \\ & 18.598 \end{aligned}$	$\begin{array}{r} 42.629 \\ 24.516 \\ 18.113 \\ \hline \end{array}$	$\begin{aligned} & 45.660 \\ & 27.857 \\ & 17.803 \\ & \hline \end{aligned}$	$\begin{aligned} & 48.981 \\ & 31.372 \\ & 17.609 \end{aligned}$	$\begin{aligned} & 52.449 \\ & 35.135 \\ & 17.364 \end{aligned}$
		$\begin{array}{\|l\|} \hline 137 \\ 142 \\ 161 \\ 142 \\ 168 \\ 138 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 195 \\ 199 \\ 212 \\ 199 \\ 217 \\ 196 \\ \hline \end{array}$	$\begin{aligned} & \left(i_{0}\right)_{10}\left(K_{i}\right)_{t} \\ & \left(\delta_{0}\right)_{10}\left(K_{\delta}\right)_{t} \\ & m_{n}^{0} \end{aligned}$	3.00 .810 .65 .575 .226 -.080	$\begin{aligned} & 2.90 \\ & .845 \\ & .67 \\ & .630 \\ & .250 \\ & -.099 \\ & \hline \end{aligned}$	2.80 .880 .70 .695 .272 -.115	$\begin{aligned} & 2.75 \\ & .915 \\ & .75 \\ & .715 \\ & .300 \\ & -.133 \end{aligned}$	2.70 .940 .77 825 .321 $-.154$	$\begin{aligned} & 2.64 \\ & .975 \\ & .81 \\ & .915 \\ & .345 \\ & -.178 \end{aligned}$	2.60 1.0 .33 1.0 .375 -.202	$\begin{aligned} & 2.55 \\ & 1.030 \\ & .87 \\ & 1.095 \\ & .405 \\ & -.231 \end{aligned}$	2.53 1.055 .90 1.20 431 -.263
$\begin{array}{\|l} 71 \\ 72 \\ \hline \end{array}$				i_{0} $\delta_{0} \quad(0)$ (0)	$\begin{array}{r} -2.673 \\ -411 \\ \hline \end{array}$	$\begin{array}{r} 2.695 \\ .464 \\ \hline \end{array}$	$\begin{array}{r} 2.710 \\ .535 \\ \hline \end{array}$	$\begin{array}{r} 2.768 \\ .590 \\ \hline \end{array}$	$\begin{array}{r} 2.792 \\ .699 \\ \hline \end{array}$	$\begin{array}{r} 2.831 \\ .815 \end{array}$	$\begin{array}{r} 2.860 \\ .913 \end{array}$	$\begin{aligned} & 2.889 \\ & 1.048 \end{aligned}$	$\begin{array}{r} 2.936 \\ 1.188 \end{array}$
70 ,				$\begin{array}{ll} \varphi & (0) \\ \varphi & (0,1) \end{array}$	$\begin{aligned} & 29.264 \\ & 29^{\circ} 16^{\prime} \end{aligned}$	$\begin{aligned} & 29.138 \\ & 29^{\circ} 08^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 29.276 \\ & 29^{\circ} 16^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 30.100 \\ & 30^{\circ} 06^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 31.438 \\ & 31^{\circ} 26^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 33.746 \\ & 33^{\circ} 45^{\circ} \end{aligned}$	$\begin{aligned} & 37.485 \\ & 37.299^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 43.319 \\ & 43^{\circ} 19 \end{aligned}$	$\begin{aligned} & 51.033 \\ & 51^{\circ} 02, \\ & \hline \end{aligned}$
$\begin{aligned} & 73 \\ & 74 \end{aligned}$					$\begin{aligned} & .332 \\ & 7.024 \end{aligned}$	$\begin{aligned} & -.190 \\ & 7.749 \end{aligned}$	$\begin{aligned} & -.657 \\ & 8.498 \end{aligned}$	$\begin{array}{r} -1.235 \\ 9.620 \end{array}$	$\begin{aligned} & -2.050 \\ & 10.790 \end{aligned}$	$\begin{array}{\|l} -3.176 \\ 12.460 \end{array}$	$\begin{array}{r} -4.712 \\ 14.970 \end{array}$	$\begin{gathered} -7.118 \\ 18.600 \end{gathered}$	$\begin{array}{\|c\|} \hline-10.485 \\ 23.180 \end{array}$
75				$\begin{array}{ll} \gamma & (0) \\ \gamma & (0,1) \\ \hline \end{array}$	$\begin{aligned} & 16.075 \\ & 16^{\circ} 04^{\prime} \end{aligned}$	$\begin{aligned} & 18.588 \\ & 18^{\circ} 35^{\prime} \end{aligned}$	$\begin{aligned} & 21.105 \\ & 21^{\circ} 06 \end{aligned}$	$\begin{aligned} & 23.552 \\ & 23^{\circ} 33^{\prime} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 26.216 \\ 26^{\circ} 13 \prime \end{array}$	$\begin{gathered} 28.932 \\ 28.56 \end{gathered}$	$\begin{aligned} & 31.629 \\ & 31^{\circ} 38 \end{aligned}$	$\begin{aligned} & 34.439 \\ & 34^{\circ} 26^{\prime} \end{aligned}$	$\begin{aligned} & 37.468 \\ & 37^{\circ} 28^{\prime} \end{aligned}$
		177	221	i'(ASSUMED INCIDENCE) $d \delta / d i$						$\begin{aligned} & -3.0^{\circ} \\ & .122 \\ & \hline \end{aligned}$	$\begin{aligned} & -4.0^{\circ} \\ & .155 \\ & \hline \end{aligned}$	$\begin{aligned} & -5.0^{\circ} \\ & .190 \end{aligned}$	$\begin{aligned} & -6.0^{\circ} \\ & .232 \end{aligned}$
189				$\begin{array}{ll} \varphi=\varphi^{\prime} & (0) \\ \varphi=\varphi^{\prime} & (0,0) \end{array}$						$\begin{aligned} & 33.594^{\circ} \\ & 33^{\circ} 36^{\prime} \end{aligned}$	$\begin{aligned} & 36.903 \\ & 36^{\circ} 54^{\prime} \end{aligned}$	$\begin{aligned} & 41.611 \\ & 41^{\circ} 37^{\prime} \end{aligned}$	$\begin{aligned} & 47.584 \\ & 47^{\circ} 35^{\prime} \end{aligned}$
79				$\gamma=\gamma, \quad(0)$						$\begin{aligned} & 28.832 \\ & 28^{\circ} 50^{\prime} \end{aligned}$	$\begin{aligned} & 31.206 \\ & 31012^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 33.175 \\ & 33^{\circ} 13^{\prime} \end{aligned}$	$\begin{aligned} & 34.707 \\ & 34^{\circ} 42^{\prime} \\ & \hline \end{aligned}$
				$\ell_{a \times} \cdot 5=c_{s} \cos \gamma$ (in.)	2.498	2.417	2.332	2.245	2.153	2.059	1.969	1.882	1.809

EQ.	TABLE		$r=R / R_{m}$	0.75	0.8125	0.875	0.9375	1.0	1.0625	1.125	1.1875	1.25
$\begin{aligned} & 86 \\ & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & \text { VIII } \\ & \text { VIII } \\ & \text { VII } \end{aligned}$	n n 0 1 α 0 0 0	$\begin{gathered} D_{R} \\ \sigma_{R} \\ \cos \beta_{2} \\ Y_{R} \cos \beta_{2} /\left(2 \lambda_{R}\right) \\ Y_{R} \end{gathered}$	$\begin{gathered} 1.061 \\ .2498 \\ .99198 \\ 0 \\ .00527 \\ .01128 \end{gathered}$	$\begin{aligned} & 1.020 \\ & .2777 \\ & .98479 \\ & .125 \\ & .00575 \\ & .0190 \end{aligned}$	$\begin{aligned} & .985 \\ & .3053 \\ & .97466 \\ & .25 \\ & .00634 \\ & .01141 \end{aligned}$	$\begin{aligned} & .955 \\ & .3316 \\ & .90058 \\ & .375 \\ & .00742 \\ & .01475 \end{aligned}$	$\begin{gathered} .928 \\ .3566 \\ .94161 \\ .5 \\ .00951 \\ .01875 \end{gathered}$	$\begin{aligned} & .905 \\ & .3801 \\ & .91629 \\ & .625 \\ & .01362 \\ & .02690 \end{aligned}$	$\begin{aligned} & .884 \\ & .4018 \\ & .88274 \\ & .75 \\ & .02097 \\ & .04200 \end{aligned}$	$\begin{aligned} & .865 \\ & .4197 \\ & .83810 \\ & .875 \\ & .0331 \\ & .06876 \end{aligned}$	$\begin{gathered} .849 \\ .4274 \\ .77753 \\ 1.0 \\ .05082 \\ .11099 \end{gathered}$
$\begin{aligned} & 89 \\ & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & \text { IX } \\ & \text { IX } \end{aligned}$	$\begin{aligned} & n \\ & n \\ & 0 \\ & 1 \\ & n \\ & 0 \\ & \frac{1}{d} \\ & 5 \end{aligned}$	$\begin{gathered} \sigma_{s} \\ D_{s} \\ \cos \alpha_{1} \\ 1-\lambda_{s} \\ Y_{s} \cos \alpha_{1} /\left(2 \sigma_{s}\right) \\ Y_{s} \end{gathered}$	$\begin{gathered} 1.226 \\ .4240 \\ .98910 \\ 1.0 \\ .01973 \\ .04890 \end{gathered}$	$\begin{aligned} & 1.110 \\ & .4190 \\ & .97899 \\ & .875 \\ & .01536 \\ & .03484 \end{aligned}$	$\begin{aligned} & 1.010 \\ & .4147 \\ & .96608 \\ & .75 \\ & .01256 \\ & .02627 \end{aligned}$	$\begin{aligned} & .924 \\ & .4106 \\ & .95040 \\ & .625 \\ & .01076 \\ & .02092 \end{aligned}$	$\begin{aligned} & .849 \\ & .4073 \\ & .93176 \\ & .50 \\ & .00973 \\ & .01773 \end{aligned}$	$\begin{aligned} & .782 \\ & .4035 \\ & .90984 \\ & .375 \\ & .00914 \\ & .01571 \end{aligned}$	$\begin{aligned} & .723 \\ & .4001 \\ & .88411 \\ & .25 \\ & .00885 \\ & .01447 \end{aligned}$	$\begin{aligned} & .670 \\ & .3959 \\ & .85380 \\ & .125 \\ & .00866 \\ & .01359 \end{aligned}$	$\begin{aligned} & .622 \\ & .3762 \\ & .81780 \\ & 0 \\ & .00801 \\ & .01218 \end{aligned}$
	$\begin{aligned} & \text { III } \\ & \frac{9 I I}{\text { VII }} \end{aligned}$	$\begin{aligned} & y \\ & \tilde{y} \\ & 2 \\ & y \\ & y \end{aligned}$	$\begin{aligned} & W_{1}^{*} V_{1}^{*} \\ & V_{2}^{*} \end{aligned}$	$\begin{aligned} & 1.07649 \\ & .89053 \\ & 1.20079 \end{aligned}$	$\begin{aligned} & 1.07466 \\ & .88832 \\ & 1.17420 \end{aligned}$	$\begin{aligned} & 1.07175 \\ & 88480 \\ & 1.14737 \end{aligned}$	$\begin{aligned} & 1.06768 \\ & .87986 \\ & 1.11993 \end{aligned}$	$\begin{gathered} 1.06238 \\ 87343 \\ 1.09218 \end{gathered}$	$\begin{aligned} & 1.05584 \\ & .86545 \\ & 1.06373 \end{aligned}$	$\begin{aligned} & 1.04801 \\ & .85588 \\ & 1.03475 \end{aligned}$	$\begin{aligned} & 1.03888 \\ & .84468 \\ & 1.00492 \end{aligned}$	$\begin{aligned} & 1.02841 \\ & .83177 \\ & .97223 \\ & \hline \end{aligned}$
$\begin{array}{r} 91 \\ 93 \\ 98 \\ 99 \\ 100 \end{array}$		$\begin{aligned} & \omega \\ & \alpha \\ & A \\ & \omega \\ & N \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{gathered} \pi_{t_{2}} \\ \pi_{t 3} \pi_{1} \\ \pi_{2} \pi_{3} \end{gathered}$	$\begin{aligned} & .35924 \\ & .32399 \\ & -.39652 \\ & -.36171 \\ & -.07253 \end{aligned}$	$\begin{array}{r} .35891 \\ .33489 \\ -.39000 \\ -.33046 \\ -.05514 \end{array}$	$\begin{aligned} & .35923 \\ & .34193 \\ & -.39144 \\ & -.29900 \\ & -.04950 \\ & \hline \end{aligned}$	$\begin{aligned} & .35737 \\ & .34425 \\ & -.38708 \\ & -.26975 \\ & -.04282 \end{aligned}$	$\begin{array}{r} .35520 \\ .34463 \\ -.38144 \\ -.24116 \\ -.03681 \end{array}$	$\begin{array}{r} .35079 \\ .34190 \\ -.37451 \\ -.21498 \\ -.03261 \end{array}$	$\begin{array}{r} .34271 \\ .33497 \\ -.36627 \\ -.19264 \\ -.03130 \\ \hline \end{array}$	$\begin{array}{r} .32867 \\ .32181 \\ -.35674 \\ -.17625 \\ -.03493 \\ \hline \end{array}$	$\begin{aligned} & .30709 \\ & .30133 \\ & -.34592 \\ & -.16553 \\ & -.04459 \end{aligned}$
94		む	$\eta \mathrm{t}$.	. 8857	. 9155	. 9348	. 9411	.9422	. 9347	. 9158	8798	. 8238
	III	$\underset{\underline{w}}{\underset{U}{U}}$	$V_{a_{1}}{ }^{*}$. 88082	. 86965	.85479	. 83622	. 81383	.78743	.75670	. 72119	.68022
96		宸	$r_{1} V_{a_{1}} \eta_{t}$.58514	. 64692	.69918	.73782	.76676	.78202	.77958	.75347	. 70046

INITIAL DISTRIBUTION LIST

Nb. Copies

1. Defense Documentation Center

Cameron Station
Alexandria, Virginia 22314
2. Library
Naval Postgraduate School

Monterey, California 93940
3. Commander, Naval Air Systems Command

1
Navy Department
Washington, D. C. 20360
4. Dr. H. J. Mueller

2
Research Administrator, Code 310
Naval Air Systems Command
Navy Department
Washington, D. C. 20360
5. Mr. I. Silver

1
Propulsion Administrator, Code 330
Naval Air Systems Command
Navy Department
Washington, D. C. 20360
6. Mr. J. R. Patton, Jr.

Office of Naval Research
Power Program, Code 473
Arlington, Virginia 22217
7. Department of Aeronautics

Naval Postgraduate School
Monterey, California 93940
8. Dean of Research Administration . 2

Code 023
Naval Postgraduate School
Monterey, California 93940
(Security classification of fltle, body of abstract and indexing annotation niust be entered when tho overall report is classilted)

ORIGINATING ACTIVITY (Corporate author)

 Naval Postgraduate SchoolMonterey, California 93940
2a. REFORT SECURITY CLASSIFICATION
Unclassified
2b. GROUP
None

None
REPORT TITLE
Aerodynamic Design of Symmetrical Blading for Three-Stage Axial Flow Compressor Test Rig
4. DESCRIPTIVE NOTES (TYPO of report and.inclusive dates)

Technical Report 1970
5 AUTHOR(S) (First name, middle inltial, last name)
Michael H. Vavra

6. REPORT DATE 1 September 1970	7a. TOTAL NO. OF PAGES 7b. NO. OF REFS 58
88. CONTRACT OR GRANT NO b. PROJECT NO.	9a. ORIGINATOR'S REPORT NUMBER(S) NPS57VA70091A
c. AIRTASK No. A310310A/551A/ 1RO1003010	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
d.	

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.
11. SUPPLEMENTARY NOTES
e
2. SPONSORING MILITARY ACTIVITY

Naval Air Systems Command
Washington, D. C. 20360
13. ABSTRACT

This report deals with the aerodynamic design of an axial compressor stage with symmetrical bladings for a research program to investigate tip clearance effects in the three-stage compressor of the Turbo-Propulsion Laboratory, NPS. It establishes the blading data and the stage performance with an iterative three-dimensional approach, and gives design criteria for the drive and the flow measuring device of the test unit. The calculated distributions of the flow properties in the stage will be used for future comparisons with test data.

This task was supported by: Navy Department, Naval Air Systems Command, Code 310 AIRTASK NO. A310310A/551A/1R01003010
(14 KEY WORDS

[^0]Aerodynamic Design
Three-Dimensional

[^0]: Test Rig

